Skip to main content

Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes

  • Reference work entry
Book cover The Prokaryotes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Anderson, R. T., and D. R. Lovley. 1997 Ecology and biogeochemistry of in situ groundwater bioremediation Adv. Microbial Ecol. 15 289–350

    CAS  Google Scholar 

  • Anderson, R. T., J. Rooney-Varga, C. V. Gaw, and D. R. Lovley. 1998 Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers Environ. Sci. Technol. 32 1222–1229

    CAS  Google Scholar 

  • Balashova, V. V., and G. A. Zavarzin. 1980 Anaerobic reduction of ferric iron by hydrogen bacteria Microbiology 48 635–639

    Google Scholar 

  • Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43 260–296

    PubMed  CAS  Google Scholar 

  • Barns, S. M., S. L. Takala, and C. R. Kuske. 1999 Wide distribution and diversity of members of the Bacterial Kingdom Acidobacterium in the environment Appl. Environ. Microbiol. 65 1731–1737

    PubMed  CAS  Google Scholar 

  • Beliaev, A. S., and D. A. Saffarini. 1998 Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction J. Bacteriol. 180 6292–6297

    PubMed  CAS  Google Scholar 

  • Benz, M., B. Schink, and A. Brune. 1998 Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria Appl. Environ. Microbiol. 64 4507–4512

    PubMed  CAS  Google Scholar 

  • Boone, D. R., Y. Liu, Z.-J. Zhao, D. L. Balkwill, G. T. Drake, T. O. Stevens, and H. C. Aldrich. 1995 Bacillus infernus sp. nov., an Fe(III)-and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface Int. J. Syst. Bacteriol. 45 441–448

    PubMed  CAS  Google Scholar 

  • Bridge, T. M., and D. B. Johnson. 1998 Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria Appl. Environ. Microbiol. 64 2181–2186

    PubMed  CAS  Google Scholar 

  • Brock, T. D., and J. Gustafson. 1976 Ferric iron reduction by sulfur-and iron-oxidizing bacteria Appl. Environ. Microbiol. 32 567–571

    PubMed  CAS  Google Scholar 

  • Bromfield, S. M. 1954 The reduction of iron oxide by bacteria J. Soil. Sci. 5 129–139

    Google Scholar 

  • Burdige, D. J., S. P. Dhakar, and K. H. Nealson. 1992 Effects of manganese oxide mineralogy on microbial and chemical manganese reduction Geomicrobiol. J. 10 27–48

    CAS  Google Scholar 

  • Caccavo Jr., F., R. P. Blakemore, and D. R. Lovley. 1992 A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire Appl. Environ. Microbiol. 58 3211–3216

    PubMed  CAS  Google Scholar 

  • Caccavo Jr., F., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney. 1994 Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism Appl. Environ. Microbiol. 60 3752–3759

    PubMed  CAS  Google Scholar 

  • Caccavo Jr., F., J. D. Coates, R. A. Rossello-Mora, W. Ludwig, K. H. Schleifer, D. R. Lovley, and M. J. McInerney. 1996 Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium Arch. Microbiol. 165 370–376

    PubMed  CAS  Google Scholar 

  • Caccavo Jr., F., P. C. Schamberger, K. Keiding, and P. H. Nielsen. 1997 Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(IIII) oxide Appl. Environ. Microbiol. 63 3837–3843

    PubMed  CAS  Google Scholar 

  • Cairns-Smith, A. G., A. J. Hall, and M. J. Russell. 1992 Mineral theories of the origin of life and an iron sulfide example Orig. Life Evol. Biosphere 22 161–180

    CAS  Google Scholar 

  • Canfield, D. E., B. B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Thamdrup, J. W. Hansen, L. P. Nielsen, and P. O. J. Hall. 1993 Pathways of organic carbon oxidation in three continental margin sediments Mar. Geol. 113 27–40

    PubMed  CAS  Google Scholar 

  • Chapelle, F. H., and D. R. Lovley. 1992 Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: A mechanism for producing discrete zones of high-iron ground water Ground Water 30 29–36

    CAS  Google Scholar 

  • Christiansen, N., and B. K. Ahring. 1996 Desulfitobacterium hafniense sp. nov., an anerobic, reductively dechlorinating bacterium Int. J. Syst. Bacteriol. 46 442–448

    Google Scholar 

  • Coates, J. D., D. J. Lonergan, and D. R. Lovley. 1995 Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments Arch. Microbiol. 164 406–413

    PubMed  CAS  Google Scholar 

  • Coates, J. D., D. J. Lonergan, H. Jenter, and D. R. Lovley. 1996 Isolation of Geobacter species from diverse sedimentary environments Appl. Environ. Microbiol. 62 1531–1536

    PubMed  CAS  Google Scholar 

  • Coates, J. D., D. J. Ellis, E. Roden, K. Gaw, E. L. Blunt-Harris, and D. R. Lovley. 1998 Recovery of humics-reducing bacteria from a diversity of sedimentary environment Appl. Environ. Microbiol. 64 1504–1509

    PubMed  CAS  Google Scholar 

  • Coates, J. D., D. J. Ellis, and D. R. Lovley. 1999 Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer Int. J. Syst. Bacteriol. 49(4) 1615–22

    Google Scholar 

  • Coates, J. D., T. B. Councell, D. J. Ellis, and D. R. Lovley. 1999 Carbohydrate-oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism Anaerobe 4 277–282

    Google Scholar 

  • Coleman, M. L., D. B. Hedrick, D. R. Lovley, D. C. White, and K. Pye. 1993 Reduction of Fe(III) in sediments by sulphate-reducing bacteria Nature 361 436–438

    CAS  Google Scholar 

  • Cord-Ruwisch, R., D. R. Lovley, and B. Schink. 1998 Growth of Geobacter sulfurreducenswith acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners Appl. Environ. Microbiol. 64 2232–2236

    PubMed  CAS  Google Scholar 

  • Cummings, D. E., F. Caccavo Jr., S. Spring, and R. F. Rosenzweig. 1999 Ferribacter limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments Arch. Microbiol. 171 183–188

    CAS  Google Scholar 

  • Das, A., A. K. Mishra, and P. Roy. 1992 Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans FEMS Microbiol. Lett. 97 167–172

    CAS  Google Scholar 

  • De Castro, A. F., and H. L. Ehrlich. 1970 Reduction of iron oxide minerals by a marine Bacillus Ant. v. Leeuwenhoek 36 317–327

    Google Scholar 

  • de Duve, C. 1995 Vital Dust Basic Books New York NY 362

    Google Scholar 

  • DiChristina, T. J., and E. F. DeLong. 1993 Design and application of rRNA-targeted oligonulceotide probes for dissimilatory iron-and manangese-reducing bacterium Shewanella putrefaciens Appl. Environ. Microbiol. 59 4152–4160

    PubMed  CAS  Google Scholar 

  • Dixon, J. B., and H. C. W. Skinner. 1992 Manganese minerals in surface environments In: H. C. W. Skinner and R. W. Fitzpatrick (Eds.) Biomineralization Processes of Iron and Manganese. Catena Verlag, Germany 31–50

    Google Scholar 

  • Dobbin, P. S., L. H. Warren, N. J. Cook, A. G. McEwan, A. K. Powell, and D. J. Richardson. 1996 Dissimilatory iron(III) reduction by Rhodobacter capsulatus Microbiology 142 765–774

    CAS  Google Scholar 

  • Fredrickson, J. K., and Y. A. Gorby. 1996 Environmental processes mediated by iron-reducing bacteria Curr. Opin. Biotech. 7 287–294

    PubMed  CAS  Google Scholar 

  • Fredrickson, J. K., J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. W. Hinman, and S.-M. Li. 1998 Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium Geochim. Cosmochim. Acta 62 3239–3257

    CAS  Google Scholar 

  • Gaspard, S., F. Vazquez, and C. Holliger. 1998 Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens Appl. Environ. Microbiol. 64 3188–3194

    PubMed  CAS  Google Scholar 

  • Gold, T. 1992 The deep, hot biosphere Proc. Natl. Acad. Sci. USA 89 6045–6049

    PubMed  CAS  Google Scholar 

  • Gorby, Y. A., and D. R. Lovley. 1991 Electron transport in the dissimilatory iron-reducer, GS-15 Appl. Environ. Microbiol. 57 867–870

    PubMed  CAS  Google Scholar 

  • Gorby, Y. A., and D. R. Lovley. 1992 Enzymatic uranium precipitation Environ. Sci. Technol. 26 205–207

    CAS  Google Scholar 

  • Greene, A. C., B. K. C. Patel, and A. J. Sheehy. 1997 Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir Int. J. Syst. Bacteriol. 47 505–509

    PubMed  CAS  Google Scholar 

  • Gunner, H. B., and M. Alexander. 1964 Anaerobic growth of Fusarium oxysporum J. Bacteriol. 87 1309–1316

    PubMed  CAS  Google Scholar 

  • Hammann, R., and J. C. G. Ottow. 1974 Reductive dissolution of Fe2O2 by saccharolytic Clostridia and Bacillus polymyxa under anaerobic conditions Z. Pflanzenernaehr. Bodenkd. 137 108–115

    CAS  Google Scholar 

  • Heijman, C. G., C. Holliger, M. A. Glaus, R. P. Schwarzenbach, and J. Zeyer. 1993 Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture Appl. Environ. Microbiol. 59 4350–4353

    PubMed  CAS  Google Scholar 

  • Hofstetter, T. B., C. G. Heijman, S. B. Haderlein, C. Holliger, and R. P. Schwarzenbach. 1999 Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions Environ. Sci. Technol. 33 1479–1487

    CAS  Google Scholar 

  • Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes Methods Microbiol. 3B 117–132

    CAS  Google Scholar 

  • Johnson, D. B., and S. McGinness. 1991 Ferric iron reduction by acidophilic heterotrophic bacteria Appl. Environ. Microbiol. 57 207–211

    PubMed  CAS  Google Scholar 

  • Jones, J. G., S. Gardener, and B. M. Simon. 1983 Bacterial reduction of ferric iron in a stratified eutrophic lake J. Gen. Microbiol. 129 131–139

    CAS  Google Scholar 

  • Jones, J. G., W. Davison, and S. Gardener. 1984 Iron reduction by bacteria: range of organisms involved and metals reduced FEMS Microbiol. Lett. 21 133–136

    CAS  Google Scholar 

  • Jones, J. G., S. Gardener, and B. M. Simon. 1984 Reduction of ferric iron by heterotrophic bacteria in lake sediments J. Gen. Microbiol. 130 45–51

    CAS  Google Scholar 

  • Kashefi, K., and D. R. Lovley. 2000 Reduction of Fe(III) Mn (IV), and toxic metals 100°C by Pyrobaculum islandicum Appl. Environ. Microbiol. 66(3) 1050–1060

    Google Scholar 

  • Kieft, T. L., J. K. Fredrickson, T. C. Onstott, Y. A. Gorby, H. M. Kostandarithes, T. J. Bailey, D. W. Kennedy, W. Li, A. E. Plymale, C. M. Spadoni, and M. S. Gray. 1999 Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate Appl. Environ. Microbiol. 65 1214–1221

    PubMed  CAS  Google Scholar 

  • Kino, K., and S. Usami. 1982 Biological reduction of ferric iron by iron-and sulfur-oxidizing bacteria Agric. Biol. Chem. 46 803–805

    CAS  Google Scholar 

  • Knight, V., and R. Blakemore. 1998 Reduction of diverse electron acceptors by Aeromonas hydrophila Arch. Microbiol. 169 239–248

    PubMed  CAS  Google Scholar 

  • Kostka, J. E., and K. H. Nealson. 1995 Dissolution and reduction of magnetite by bacteria Environ. Sci. Technol. 29 2535–2540

    PubMed  CAS  Google Scholar 

  • Kostka, J. E., J. W. Stucki, K. H. Nealson, and J. Wu. 1996 Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1 Clays Clay Min. 44 522–529

    CAS  Google Scholar 

  • Krumholz, L. R., R. Sharp, and S. S. Fishbain. 1996 A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation Appl. Environ. Microbiol. 62 4108–4113

    PubMed  CAS  Google Scholar 

  • Krumholz, L. R. 1997 Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors Int. J. Syst. Bacteriol. 47 1262–1263

    CAS  Google Scholar 

  • Laverman, A. M., J. Switzer Blum, J. K. Schaefer, E. J. P. Phillips, D. R. Lovley, and R. S. Oremland. 1995 Growth of strain SES-3 with arsenate and other diverse electron acceptors Appl. Environ. Microbiol. 61 3556–3561

    PubMed  CAS  Google Scholar 

  • Liesack, W., and K. Finster. 1994 Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov Int. J. Syst. Bacteriol. 44 753–758

    Google Scholar 

  • Lloyd, J. R., and L. E. Macaskie. 1996 A novel phosphorimager-based technique for monitoring the microbial reduction of technetium Appl. Environ. Microbiol. 62 578–582

    PubMed  CAS  Google Scholar 

  • Lloyd, J. R., E. L. Blunt-Harris, and D. R. Lovley. 1999 The periplasmic 9.6 kDa c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III) J. Bacteriol. 181(24) 7647–7649

    Google Scholar 

  • Lonergan, D. J., H. Jenter, J. D. Coates, E. J. P. Phillips, T. Schmidt, and D. R. Lovley. 1996 Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria J. Bacteriol. 178 2404–2408

    Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1986 Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River Appl. Environ. Microbiol. 52 751–757

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1986 Organic matter mineralization with reduction of ferric iron in anaerobic sediments Appl. Environ. Microbiol. 51 683–689

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. 1987 Organic matter mineralization with the reduction of ferric iron: A review Geomicrobiol. J. 5 375–399

    CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1987 Rapid assay for microbially reducible ferric iron in aquatic sediments Appl. Environ. Microbiol. 53 1536–1540

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., J. F. Stolz, G. L. Nord, and E. J. P. Phillips. 1987 Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism Nature 330 252–254

    CAS  Google Scholar 

  • Lovley, D. R., and S. Goodwin. 1988 Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments Geochim. Cosmochim. Acta 52 2993–3003

    CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1988 Manganese inhibition of microbial iron reduction in anaerobic sediments Geomicrobiol. J. 6 145–155

    CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1988 Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Appl. Environ. Microbiol. 54 1472–1480

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1989 Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments Appl. Environ. Microbiol. 55 3234–3236

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., M. J. Baedecker, D. J. Lonergan, I. M. Cozzarelli, E. J. P. Phillips, and D. I. Siegel. 1989 Oxidation of aromatic contaminants coupled to microbial iron reduction Nature 339 297–299

    CAS  Google Scholar 

  • Lovley, D. R. 1990 Magnetite formation during microbial dissimilatory iron reduction In: R. B. Frankel and R. P. Blakemore (Eds.) Iron Biominerals Plenum Press New York NY 151–166

    Google Scholar 

  • Lovley, D. R., F. H. Chapelle, and E. J. P. Phillips. 1990 Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain Geology 18 954–957

    CAS  Google Scholar 

  • Lovley, D. R. 1991 Dissimilatory Fe(III) and Mn(IV) reduction Microbiol. Rev. 55 259–287

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., E. J. P. Phillips, Y. A. Gorby, and E. R. Landa. 1991 Microbial reduction of uranium Nature 350 413–416

    CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1992 Reduction of uranium by Desulfovibrio desulfuricans Appl. Environ. Microbiol. 58 850–856

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. 1993 Dissimilatory metal reduction Ann. Rev. Microbiol. 47 263–290

    CAS  Google Scholar 

  • Lovley, D. R., E. E. Roden, E. J. P. Phillips, and J. C. Woodward. 1993 Enzymatic iron and uranium reduction by sulfate-reducing bacteria Marine Geol. 113 41–53

    CAS  Google Scholar 

  • Lovley, D. R., S. J. Giovannoni, D. C. White, J. E. Champine, E. J. P. Phillips, Y. A. Gorby, and S. Goodwin. 1993 Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals Arch. Microbiol. 159 336–344

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1994 Novel processes for anoxic sulfate production from elemental sulfur by sulfate-reducing bacteria Appl. Environ. Microbiol. 60 2394–2399

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., F. H. Chapelle, and J. C. Woodward. 1994 Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic ground water Environ. Sci. Technol. 28 1205–1210

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., J. C. Woodward, and F. H. Chapelle. 1994 Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands Nature 370 128–131

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. 1995 Bioremediation of organic and metal contaminants with dissimilatory metal reduction J. Indust. Microbiol. 14 85–93

    CAS  Google Scholar 

  • Lovley, D. R. 1995 Microbial reduction of iron, manganese, and other metals Adv. Agron. 54 175–231

    CAS  Google Scholar 

  • Lovley, D. R., and F. H. Chapelle. 1995 Deep subsurface microbial processes Rev. Geophys. 33 365–381

    Google Scholar 

  • Lovley, D. R., E. J. P. Phillips, D. J. Lonergan, and P. K. Widman. 1995 Fe(III) and S° reduction by Pelobacter carbinolicus Appl. Environ. Microbiol. 61 2132–2138

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996 Humic substances as electron acceptors for microbial respiration Nature 382 445–448

    CAS  Google Scholar 

  • Lovley, D. R. 1997 Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers J. Indust. Microbiol. 18 75–81

    CAS  Google Scholar 

  • Lovley, D. R., and J. D. Coates. 1997 Bioremediation of metal contamination Curr. Opin. Biotech. 8 285–289

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., J. D. Coates, D. A. Saffarini, and D. J. Lonergan. 1997 Dissimilatory iron reduction In: G. Winkelman and C. J. Carrano (Eds.) Iron and Related Transition Metals in Microbial Metabolism Harwood Academic Publishers Switzerland 187–215

    Google Scholar 

  • Lovley, D. R., J. L. Fraga, E. L. Blunt-Harris, L. A. Hayes, E. J. P. Phillips, and J. D. Coates. 1998 Humic substances as a mediator for microbially catalyzed metal reduction Acta Hydrochim. Hydrobiol. 26 152–157

    CAS  Google Scholar 

  • Lovley, D. R., and E. L. Blunt-Harris. 1999 Role of humics-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction Appl. Environ. Microbiol. 9 4252–4254

    Google Scholar 

  • Lovley, D. R., J. L. Fraga, J. D. Coates, and E. L. Blunt-Harris. 1999 Humics as an electron donor for anaerobic respiration Environ. Microbiol. 1 89–98

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., K. Kashefi, M. Vargas, J. M. Tor, and E. L. Blunt-Harris. 2000 Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms Chem. Geol.

    Google Scholar 

  • Magnuson, T. S., A. L. Hodges-Myerson, and D. R. Lovley. 2000 Purification of the membrane-bound Fe(III) reductase complex from the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens FEMS Microbiol. Lett 185(2) 205–211

    Google Scholar 

  • Malcolm, R. L., and P. MacCarthy. 1986 Limitations in the use of commercial humic acids in water and soil research Environ. Sci. Tech. 20 904–911

    CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1974 A serum bottle modification of the Hungate technique for cultivating obligate anaerobes Appl. Microbiol. 27 985–987

    PubMed  CAS  Google Scholar 

  • Myers, C. R., and K. H. Nealson. 1988 Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor Science 240 1319–1321

    PubMed  CAS  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1992 Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 J. Bacteriol. 174 3429–3438

    PubMed  CAS  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1993 Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1 FEMS Microbiol. Lett. 108 15–22

    CAS  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1997 Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens strain MR-1 J. Bacteriol. 179 1143–1152

    PubMed  CAS  Google Scholar 

  • Nealson, K. H., and D. Saffarini. 1994 Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation Ann. Rev. Microbiol. 48 311–343

    CAS  Google Scholar 

  • Nevin, K. P., and D. R. Lovley. 2000 Potential for nonenzymatic reduction of Fe(III) during microbial oxidation of organic matter coupled to Fe(III) reduction 66(5) 2248–2251

    Google Scholar 

  • Nevin, K. P., and D. R. Lovley. 2002 Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans Appl. Environ. Microbiol. 68(5) 2294–2299

    Google Scholar 

  • Newman, D. K., D. Ahmann, and F. M. M. Morel. 1998 A brief review of microbial arsenate respiration Geomicrobiol. J. 15 255–268

    CAS  Google Scholar 

  • Oremland, R. S. 1994 Biogeochemical transformations of selenium in anoxic environments In: W. T. J. Frankenberger and S. N. Benson (Eds.) Selenium in the Environment Marcel Dekker New York NY 389–419

    Google Scholar 

  • Oremland, R. S., J. Switzer Blum, C. W. Culbertson, P. T. Visscher, L. G. Miller, P. Dowdle, and R. E. Strohmaier. 1994 Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3 Appl. Environ. Microbiol. 60 3011–3019

    PubMed  CAS  Google Scholar 

  • Ottow, J. C. G., and A. von Klopotek. 1969 Enzymatic reduction of iron oxide by fungi Appl. Microbiol. 18 41–43

    PubMed  CAS  Google Scholar 

  • Ottow, J. C. G. 1970 Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of iron-reducing bacteria Z. Allg. Mikrobiol. 10 55–62

    PubMed  CAS  Google Scholar 

  • Ottow, J. C. G., and H. Glathe. 1971 Isolation and identification of iron-reducing bacteria from gley soils Soil Biol. Biochem. 3 43–55

    Google Scholar 

  • Patrick, J. A., L. A. Achenbach, and J. D. Coates. 1999 Geobacter humireducens-Eight new humic-reducing bacteria from a diversity of environments

    Google Scholar 

  • Pedersen, K., J. Arlinger, S. Ekendahl, and L. Hallbeck. 1996 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden FEMS Microbiol. Ecol. 19 249–262

    CAS  Google Scholar 

  • Phillips, E. J. P., and D. R. Lovley. 1987 Determination of Fe(III) and Fe(II) in oxalate extracts of sediment Soil Sci. Soc. Am. J. 51 938–941

    CAS  Google Scholar 

  • Phillips, E., D. R. Lovley, and E. E. Roden. 1993 Composition of non-microbially reducible Fe(III) in aquatic sediments Appl. Environ. Microbiol. 59 2727–2729

    PubMed  CAS  Google Scholar 

  • Ponnamperuma, F. N. 1972 The chemistry of submerged soils Adv. Agron. 24 29–96

    CAS  Google Scholar 

  • Ponnamperuma, F. N. 1984 Effects of flooding on soils In: T. T. Kozlowski (Ed.) Flooding and Plant Growth Academic Press New York NY 9–45

    Google Scholar 

  • Pronk, J. T., J. C. De Bruyn, P. Bos, and J. G. Kuenen. 1992 Anaerobic growth of Thiobacillus ferrooxidans Appl. Environ. Microbiol. 58 2227–2230

    PubMed  CAS  Google Scholar 

  • Roberts, J. L. 1947 Reduction of ferric hydroxide by strains of Bacillus polymyxa Soil Sci. 63 135–140

    CAS  Google Scholar 

  • Roden, E. E., and D. R. Lovley. 1993 Dissimilatory Fe(III) reduction by the marine microorganism, Desulfuromonas acetoxidans Appl. Environ. Microbiol. 59 734–742

    PubMed  CAS  Google Scholar 

  • Roden, E. E., and D. R. Lovley. 1993 Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments Geomicrobiol. J. 11 49–56

    CAS  Google Scholar 

  • Roden, E. E., and J. M. Zachara. 1996 Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth Environ. Sci. Technol. 30 1618–1628

    CAS  Google Scholar 

  • Rooney-Varga, J. N., R. T. Anderson, J. L. Fraga, D. Ringelberg, and D. R. Lovley. 1999 Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer Appl. Environ. Microbiol. 65 3056–3063

    PubMed  CAS  Google Scholar 

  • Rossello-Mora, R. A., W. Ludwig, P. Kampfer, R. Amann, and K.-H. Schleifer. 1995 Ferrimonas balearica gen. nov. spec. nov., a new marine facultative Fe(III)-reducing bacterium Syst. Appl. Microbiol. 18 196–202

    Google Scholar 

  • Schink, B. 1992 The genus Pelobacter In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{http://www.prokaryotes.com}{The Prokaryotes}] Springer-Verlag New York NY 3393–3399

    Google Scholar 

  • Schnell, S., S. Ratering, and K. H. Jansen. 1998 Simultaneous determination of iron(III), iron(II), and manganese(II) in environmental samples by ion chromatography Environ. Sci. Technol. 32 1530–1537

    CAS  Google Scholar 

  • Schwertmann, U., and R. M. Cornell. 1991 Iron oxides in the laboratory VCH New York NY 138

    Google Scholar 

  • Schwertmann, U., and R. W. Fitzpatrick. 1992 Iron minerals in surface environments In: H. C. W. Skinner and R. W. Fitzpatrick (Eds.) Biomineralization Processes of Iron and Manganese Catena Verlag Germany 7–30

    Google Scholar 

  • Scott, D. T., D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, and D. R. Lovley. 1998 Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms Environ. Sci. Technol. 32 2984–2989

    CAS  Google Scholar 

  • Seeliger, S., R. Cord-Ruwisch, and B. Schink. 1998 A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria J. Bacteriol. 180 3686–3691

    PubMed  CAS  Google Scholar 

  • Slobodkin, A., A.-L. Reysenbach, N. Strutz, M. Dreier, and J. Wiegel. 1997 Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring Int. J. Syst. Bacteriol. 47 541–547

    PubMed  CAS  Google Scholar 

  • Starkey, R. L., and H. O. Halvorson. 1927 Studies on the transformations of iron in nature. II: Concerning the importance of microorganisms in the solution and precipitation of iron Soil Sci. 24 381–402

    CAS  Google Scholar 

  • Stolz, J. F., D. J. Ellils, J. Switzer Blum, D. Ahmann, D. R. Lovley, and R. S. Oremland. 1999 Sulfurospirillum barnesii sp. nov., Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the É› Proteobacteria Int. J. Syst. Bacteriol. 1177–1180

    Google Scholar 

  • Stookey, L. L. 1970 Ferrozine—a new spectrophotometric reagent for iron Anal. Chem. 42 779–781

    CAS  Google Scholar 

  • Straub, K. L., M. Hanzlik, and B. E. E. Buchholz-Cleven. 1998 The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria Syst. Appl. Microbiol. 21 442–449

    PubMed  CAS  Google Scholar 

  • Tebo, B. M., and A. Y. Obraztsova. 1998 Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors FEMS Microbiol. Lett. 162 193–198

    CAS  Google Scholar 

  • Thamdrup, B., K. Finster, J. W. Hansen, and F. Bak. 1993 Bacterial disproportionation of elemental sulfur coupled ot chemical reduction of iron or manganese Appl. Environ. Microbiol. 59 101–108

    PubMed  CAS  Google Scholar 

  • Troshanov, E. P. 1968 Iron-and manganese-reducing microorganisms in ore-containing lakes of the Karelian Isthmus Microbiology 37 786–790

    Google Scholar 

  • Utkin, I., C. Woese, and J. Wiegel. 1994 Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorphenolic compounds Int. J. Syst. Bacteriol. 44 612–619

    PubMed  CAS  Google Scholar 

  • Van der Peer, Y., and R. De Wachter. 1994 TREECON for Windows: A software package for the construction and drawing of evolutionary trees for Microsoft Windows environment Comput. Applic. Biosci. 10 569–570

    Google Scholar 

  • Vargas, M., K. Kashefi, E. L. Blunt-Harris, and D. R. Lovley. 1998 Microbiological evidence for Fe(III) reduction on early Earth Nature 395 65–67

    PubMed  CAS  Google Scholar 

  • Verschuur, G. L. 1993 Hidden Attraction: The History and Mystery of Magnetism Oxford University Press New York NY

    Google Scholar 

  • Walker, J. C. G. 1980 Atmospheric constraints on the evolution of metabolism Origins of Life 10 93–104

    PubMed  CAS  Google Scholar 

  • Walker, J. C. G. 1987 Was the Archaean biosphere upside down? Nature 329 710–712

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Lovley, D. (2006). Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_21

Download citation

Publish with us

Policies and ethics