Skip to main content

Cellulose-decomposing Bacteria and Their Enzyme Systems

  • Reference work entry
The Prokaryotes

1 Introduction

From an anthropocentric point of view, for millennia, human culture has been intricately involved with cellulose, the major component of the plant cell wall. The development of the wood, paper and textile industries has served to incorporate cellulosic materials into the fabric of our society. Within the past century, however, cellulosic wastes, derived mainly from the same industries, have also become a major source of environmental pollution. This chapter will concentrate mainly on cellulose and the cellulolytic bacteria, in view of their importance to mankind and world ecology. Nevertheless, the true substrate of these bacteria—i.e., the complement of plant cell wall polysaccharides in general—is much more complex than cellulose alone. Likewise, the complement of enzymes—both the cellulolytic and the non-cellulolytic glycosyl hydrolases—are produced concurrently in these bacteria for the purpose of efficient synergistic degradation of the complete substrate composite...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Ahsan, M. M., T. Kimura, S. Karita, K. Sakka, and K. Ohmiya. 1996 Cloning, DNA sequencing, and expression of the gene encoding Clostridium thermocellum cellulase CelJ, the largest catalytic component of the cellulosome J. Bacteriol. 178 5732–5740

    PubMed  CAS  Google Scholar 

  • Armand, S., S. Drouillard, M. Schulein, B. Henrissat, and H. Driguez. 1997 A bifunctionalized fluorogenic tetrasaccharide as a substrate to study cellulases J. Biol. Chem. 272 2709–2713

    Article  PubMed  CAS  Google Scholar 

  • Atalla, R. H., and D. L. VanderHart. 1984 Native cellulose: A composite of two distinct crystalline forms Science 223 283–285

    Article  PubMed  CAS  Google Scholar 

  • Atalla, R. H. 1999 Celluloses In: B. M. Pinto (Ed.) Comprehensive Natural Products Chemistry Elsevier Cambridge UK 3 529–598

    Chapter  Google Scholar 

  • Bach, E., and E. Schollmeyer. 1992 An ultraviolet-spectrophotometric method with 2-cyanoacetamide for the determination of the enzymatic degradation of reducing polysaccharides Analyt. Biochem. 203(2) 335–339

    Article  Google Scholar 

  • Bagnara-Tardif, C., C. Gaudin, A. Belaich, P. Hoest, T. Citard, and J.-P. Belaich. 1992 Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum Gene 119 17–28

    Article  PubMed  CAS  Google Scholar 

  • Barr, B. K., Y.-L. Hsieh, B. Ganem, and D. B. Wilson. 1996 Identification of two functionally different classes of exocellulases Biochemistry 35 586–592

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E. A., R. Kenig, and R. Lamed. 1983 Adherence of Clostridium thermocellum to cellulose J. Bacteriol. 156 818–827

    PubMed  CAS  Google Scholar 

  • Bayer, E. A., E. Setter, and R. Lamed. 1985 Organization and distribution of the cellulosome in Clostridium thermocellum J. Bacteriol. 163 552–559

    PubMed  CAS  Google Scholar 

  • Bayer, E. A., and R. Lamed. 1986 Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose J. Bacteriol. 167 828–836

    PubMed  CAS  Google Scholar 

  • Bayer, E. A., and R. Lamed. 1992 The cellulose paradox: Pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3 171–188

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E. A., E. Morag, and R. Lamed. 1994 The cellulosome—a treasure-trove for biotechnology Trends Biotechnol. 12 378–386

    Article  Google Scholar 

  • Bayer, E. A., E. Morag, Y. Shoham, J. Tormo, and R. Lamed. 1996 The cellulosome: A cell-surface organelle for the adhesion to and degradation of cellulose In: M. Fletcher (Ed.) Bacterial Adhesion: Molecular and Ecological Diversity Wiley-Liss New York NY 155–182

    Google Scholar 

  • Bayer, E. A., H. Chanzy, R. Lamed, and Y. Shoham. 1998aCellulose, cellulases and cellulosomes Curr. Opin. Struct. Biol. 8 548–557

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E. A., E. Morag, R. Lamed, S. Yaron, and Y. Shoham. 1998bCellulosome structure: Four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics In: M. Claeyssens, W. Nerinckx, and K. Piens (Eds.) Carbohydrases from Trichoderma reesei and Other Microorganisms The Royal Society of Chemistry London 39–67

    Google Scholar 

  • Bayer, E. A., L. J. W. Shimon, R. Lamed, and Y. Shoham. 1998cCellulosomes: Structure and ultrastructure J. Struct. Biol. 124 221–234

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E. A., Y. Shoham, and R. Lamed. 2000 The cellulosome—an exocellular organelle for degrading plant cell wall polysaccharides In: R. J. Doyle (Ed.) Glycomicrobiology Kluwer Academic/Plenum Publishers New York NY 387–439

    Google Scholar 

  • Béguin, P. 1983 Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas Analyt. Biochem. 131 333–336

    Article  PubMed  Google Scholar 

  • Béguin, P. 1990 Molecular biology of cellulose degradation Ann. Rev. Microbiol. 44 219–248

    Article  Google Scholar 

  • Béguin, P., and J.-P. Aubert. 1994 The biological degradation of cellulose FEMS Microbiol. Lett. 13 25–58

    Article  Google Scholar 

  • Béguin, P., and M. Lemaire. 1996 The cellulosome: An exocellular, multiprotein complex specialized in cellulose degradation Crit. Rev. Biochem. Molec. Biol. 31 201–236

    Article  Google Scholar 

  • Belaich, J.-P., C. Tardif, A. Belaich, and C. Gaudin. 1997 The cellulolytic system of Clostridium cellulolyticum J. Biotechnol. 57 3–14

    Article  PubMed  CAS  Google Scholar 

  • Belaich, A., J.-P. Belaich, H.-P. Fierobe, C. Gaudin, S. Pagès, C. Reverbel-Leroy, and C. Tardif. 1998 Cellulosome analysis and cellulases CelF and CelG from Clostridium cellulolyticum In: M. Claeyssens, W. Nerinckx, and K. Piens (Eds.) Carbohydrases from Trichoderma reesei and Other Microorganisms The Royal Society of Chemistry London 73–86

    Google Scholar 

  • Belaich, J.-P., A. Belaich, H.-P. Fierobe, L. Gal, C. Gaudin, S. Pagès, C. Reverbel-Leroy, and C. Tardif. 1999 The cellulolytic system of Clostridium cellulolyticum In: K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita, and T. Kimura (Ed.) Genetics, Biochemistry and Ecology of Cellulose Degradation Uni Publishers Tokyo 479–487

    Google Scholar 

  • Bhat, M. K. 2000 Cellulases and related enzymes in biotechnology Biotechnol. Adv. 18 355–383

    Article  PubMed  CAS  Google Scholar 

  • Biely, P. 1985 Microbial xylanolytic systems Trends Biotechnol. 3 285–290

    Article  Google Scholar 

  • Blum, D. L., I. A. Kataeva, X. L. Li, and L. G. Ljungdahl. 2000 Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ J Bacteriol 182(5) 1346–1351

    Article  Google Scholar 

  • Boraston, A. B., B. W. McLean, J. M. Kormos, M. Alam, N. R. Gilkes, C. A. Haynes, P. Tomme, D. G. Kilburn, and R. A. Warren. 1999 Carbohydrate-binding modules: Diversity of structure and function In: H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (Eds.) Recent Advances in Carbohydrate Bioengineering The Royal Society of Chemistry Cambridge 202–211

    Google Scholar 

  • Borneman, W. S., L. G. Ljungdahl, R. D. Hartley, and D. E. Akin. 1993 Feruloyl and p-coumaroyl esterases from the anaerobic fungus Neocallimastix strain MC-2 properties and functions in plant cell wall degradation In: M. P. Coughlan and G. P. Hazlewood (Eds.) Hemicellulose and Hemicellulases Portland Press London 85–102

    Google Scholar 

  • Brun, E., F. Moriaud, P. Gans, M. Blackledge, F. Barras, and D. Marion. 1997 Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi Biochemistry 36 16074–16086

    Article  PubMed  CAS  Google Scholar 

  • Carpita, N. C., and D. M. Gibeaut. 1993 Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth Plant J. 3 1–30

    Article  PubMed  CAS  Google Scholar 

  • Chanzy, H. 1990 Aspects of cellulose structure In: J. F. Kennedy, G. O. Philips, and P. A. Williams (Eds.) Cellulose Sources and Exploitation: Industrial Utilization, Biotechnology and Physico-chemical Properties Ellis Horwood New York NY 3–12

    Google Scholar 

  • Chauvaux, S., P. Béguin, J.-P. Aubert, K. M. Bhat, L. A. Gow, T. M. Wood, and A. Bairoch. 1990 Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D Biochem. J. 265 261–265

    PubMed  CAS  Google Scholar 

  • Chauvaux, S., M. Matuschek, and P. Béguin. 1999 Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis cell envelopes J Bacteriol. 181 2455–2458

    PubMed  CAS  Google Scholar 

  • Chen, H., X. L. Li, D. L. Blum, and L. G. Ljungdahl. 1998 Two genes of the anaerobic fungus Orpinomyces sp. strain PC-2 encoding cellulases with endoglucanase activities may have arisen by gene duplication FEMS Microbiol. Lett. 159 63–68

    Article  PubMed  CAS  Google Scholar 

  • Claeyssens, M., and B. Henrissat. 1992 Specificity mapping of cellulolytic enzymes: Classification into families of structurally related proteins confirmed by biochemical analysis Protein Sci. 1(10) 1293–1297

    Article  Google Scholar 

  • Coughlan, M. P., and F. Mayer. 1992 The cellulose-decomposing bacteria and their enzyme systems In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{http://www.prokaryotes.com} The Prokaryotes, 2nd ed.] Springer New York NY 1 459–516

    Google Scholar 

  • Coughlan, M. P., and G. P. Hazlewood. 1993 β-1,4-D-xylan-degrading enzyme systems: Biochemistry, molecular biology and applications Biotechnol. Appl. Biochem. 17 259–289

    PubMed  CAS  Google Scholar 

  • Coutinho, P. M., and B. Henrissat. 1999aCarbohydrate-active enzymes: An integrated database approach In: H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (Eds.) Recent Advances in Carbohydrate Bioengineering The Royal Society of Chemistry Cambridge 3–12

    Google Scholar 

  • Coutinho, P. M., and B. Henrissat. 1999b Carbohydrate-Active enZYmes and associated MODular Organization server. CAZyModO Website afmb.cnrs-mrs.fr/

    Google Scholar 

  • Coutinho, P. M., and B. Henrissat. 1999cThe modular structure of cellulases and other carbohydrate-active enzymes: An integrated database approach In: K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita, and T. Kimura (Eds.) Genetics, Biochemistry and Ecology of Cellulose Degradation Uni Publishers Tokyo 15–23

    Google Scholar 

  • Daniel, R. M., H. S. Toogood, and P. L. Bergquist. 1996 Thermostable proteases Biotechnol. Genet. Engin. Rev. 13 51–100

    CAS  Google Scholar 

  • Das, N. N., S. C. Das, and A. K. Mukerjee. 1984 On the ester linkage between lignin and 4-O-methyl-D-glucurono-D-xylan in jute fiber (Corchorus capsularis) Carbohydr. Res. 127 345–348

    Article  CAS  Google Scholar 

  • Davies, G., and B. Henrissat. 1995 Structures and mechanisms of glycosyl hydrolases Structure 3 853–859

    Article  PubMed  CAS  Google Scholar 

  • Davies, G. J., L. Mackenzie, A. Varrot, M. Dauter, M. Brzozowski, M. Schülein, and S. G. Withers. 1998 Snapshots along an enzymatic reaction coordinate: Analysis of a retaining β-glycoside hydrolase Biochemistry 37 11707–11713

    Article  PubMed  CAS  Google Scholar 

  • Ding, S.-Y., E. A. Bayer, D. Steiner, Y. Shoham, and R. Lamed. 1999 A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a Family-9 glycosyl hydrolase J. Bacteriol. 181 6720–6729

    PubMed  CAS  Google Scholar 

  • Ding, S.-Y., E. A. Bayer, D. Steiner, Y. Shoham, and R. Lamed. 2000 A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins J. Bacteriol. 182 4915–4925

    Article  PubMed  CAS  Google Scholar 

  • Ding, S.-Y., M. T. Rincon, R. Lamed, J. C. Martin, S. I. McCrae, V. Aurilia, Y. Shoham, E. A. Bayer, and H. J. Flint. 2001 Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens J. Bacteriol. 183 1945–1953

    Article  PubMed  CAS  Google Scholar 

  • Divne, C., J. Stahlberg, T. Teeri, and T. Jones. 1998 High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei J. Molec. Biol. 275 309–325

    Article  PubMed  CAS  Google Scholar 

  • Doi, R. H., M. Goldstein, S. Hashida, J. S. Park, and M. Takagi. 1994 The Clostridium cellulovorans cellulosome Crit. Rev. Microbiol. 20 87–93

    Article  PubMed  CAS  Google Scholar 

  • Doi, R. H., J. S. Park, C. C. Liu, L. M. Malburg, Y. Tamaru, A. Ichiishi, and A. Ibrahim. 1998 Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans Extremophiles 2 53–60

    Article  PubMed  CAS  Google Scholar 

  • Doi, R. H., and Y. Tamura. 2001 The Clostridium cellulovorans cellulosome: An enzyme complex with plant cell wall degrading activity Chem. Rec. 1 24–32

    Article  PubMed  CAS  Google Scholar 

  • Doner, L. W., and P. L. Irwin. 1992 Assay of reducing end-groups in oligosaccaride homolgues with 2,2′-bicinchoninate Analyt. Biochem. 202 50–53

    Article  PubMed  CAS  Google Scholar 

  • Driguez, H. 1997 Thiooligosaccharides in glycobiology Topics Curr. Chem. 187 85–116

    Article  CAS  Google Scholar 

  • Eriksson, K.-E. L., R. A. Blanchette, and P. Ander. 1990 Biodegradation of hemicelluloses Microbial and Enzymatic Degradation of Wood and Wood Components Springer-Verlag Heidelberg 181–397

    Chapter  Google Scholar 

  • Felix, C. R., and L. G. Ljungdahl. 1993 The cellulosome—the exocellular organelle of Clostridium Ann. Rev. Microbiol. 47 791–819

    Article  CAS  Google Scholar 

  • Fernandes, A. C., C. M. Fontes, H. J. Gilbert, G. P. Hazlewood, T. H. Fernandes, and L. M. A. Ferreira. 1999 Homologous xylanases from Clostridium thermocellum: Evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes Biochem. J. 342 105–110

    Article  PubMed  CAS  Google Scholar 

  • Flint, H. J., J. Martin, C. A. McPherson, A. S. Daniel, and J. X. Zhang. 1993 A bifunctional enzyme, with separate xylanase and β(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens J. Bacteriol. 175 2943–2951

    PubMed  CAS  Google Scholar 

  • Fujino, T., P. Béguin, and J.-P. Aubert. 1993 Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface J. Bacteriol. 175 1891–1899

    PubMed  CAS  Google Scholar 

  • Gal, L., C. Gaudin, A. Belaich, S. Pagès, C. Tardif, and J.-P. Belaich. 1997aCelG from Clostridium cellulolyticum: A multidomain endoglucanase acting efficiently on crystalline cellulose J. Bacteriol. 179 6595–6601

    PubMed  CAS  Google Scholar 

  • Gal, L., S. Pagès, C. Gaudin, A. Belaich, C. Reverbel-Leroy, C. Tardif, and J.-P. Belaich. 1997bCharacterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum Appl. Environ. Microbiol. 63 903–909

    PubMed  CAS  Google Scholar 

  • Garcia, E., D. Johnston, J. R. Whitaker, and S. P. Shoemaker. 1993 Assessment of endo-1,4-beta-D-glucanase activity by a rapid colorimetric assay using disodium 2,2′-bicinchoninate J. Food Biochem. 17 135–145

    Article  CAS  Google Scholar 

  • Gaudin, C., A. Belaich, S. Champ, and J. P. Belaich. 2000 CelE, a multidomain cellulase from Clostridium cellulolyticum: A key enzyme in the cellulosome? J. Bacteriol. 182 1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Ghose, T. K. 1987 Measurments of cellulase activity Pure Appl. Chem. 59 257–268

    Article  CAS  Google Scholar 

  • Gibbs, M. D., R. A. Reeves, G. K. Farrington, P. Anderson, D. P. Williams, and P. L. Bergquist. 2000 Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1 Curr. Microbiol. 40(5) 333–40

    Article  Google Scholar 

  • Gilbert, H. J., G. P. Hazlewood, J. I. Laurie, C. G. Orpin, and G. P. Xue. 1992 Homologous catalytic domains in a rumen fungal xylanase: Evidence for gene duplication and prokaryotic origin Molec. Microbiol. 6 2065–2072

    Article  CAS  Google Scholar 

  • Gilbert, H. J., and G. P. Hazlewood. 1993 Bacterial cellulases and xylanases J. Gen. Microbiol. 139 187–194

    Article  CAS  Google Scholar 

  • Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. J. Miller, and R. A. J. Warren. 1991 Domains in microbial β-1,4-glycanases: Sequence conservation, function, and enzyme families Microbiol. Rev. 55(2) 303–315

    Google Scholar 

  • Green III, F., C. A. Clausen, and T. L. Highley. 1989 Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates Analyt. Biochem. 182(2) 197–9

    Article  Google Scholar 

  • Guglielmi, G., and P. Béguin. 1998 Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromosome FEMS Microbiol. Lett. 161 209–215

    Article  PubMed  CAS  Google Scholar 

  • Haigler, C. H., and P. J. Weimer. 1991 In: C. H. Haigler and P. J. Weimer (Eds.) Biosynthesis and Biodegradation of Cellulose Marcel Dekker New York NY

    Google Scholar 

  • Hazlewood, G. P., and H. J. Gilbert. 1993 Molecular biology of hemicellulases In: M. P. Coughlan and G. P. Hazlewood (Eds.) Hemicellulose and Hemicellulases Portland Press London 103–126

    Google Scholar 

  • Henrissat, B. 1991 A classification of glycosyl hydrolases based on amino acid sequence similarities Biochem. J. 280 309–316

    PubMed  CAS  Google Scholar 

  • Henrissat, B., I. Callebaut, S. Fabrega, P. Lehn, J.-P. Mornon, and G. Davies. 1995 Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases Proc. Natl. Acad. Sci. USA 92 7090–7094

    Article  PubMed  CAS  Google Scholar 

  • Henrissat, B., and A. Bairoch. 1996 Updating the sequence-based classification of glycosyl hydrolases Biochem. J. 316 695–696

    PubMed  Google Scholar 

  • Henrissat, B., and G. Davies. 1997 Structural and sequence-based classification of glycoside hydrolases Curr. Opin. Struct. Biol. 7 637–644

    Article  PubMed  CAS  Google Scholar 

  • Henrissat, B., T. T. Teeri, and R. A. J. Warren. 1998 A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants FEBS Lett. 425 352–354

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, T. 1990 Lignin biochemistry, biosynthesis and biodegradation Wood Sci. Technol. 24 23–63

    Article  CAS  Google Scholar 

  • Hilden, L., L. Eng, G. Johansson, S. E. Lindqvist, and G. Pettersson. 2001 An amperometric cellobiose dehydrogenase-based biosensor can be used for measurement of cellulase activity Analyt. Biochem. 290(2) 245–50

    Article  CAS  Google Scholar 

  • Himmel, M. E., M. F. Ruth, and C. E. Wyman. 1999 Cellulase for commodity products from cellulosic biomass Curr. Opin. Biotechnol. 10(4) 358–364

    Article  Google Scholar 

  • Hurlbert, J. C., and J. F. Preston III. 2001 Functional characterization of a novel xylanase from corn strain of Erwinia chrysanthemi J. Bacteriol. 183 2093–2100

    Article  PubMed  CAS  Google Scholar 

  • Irwin, D., L. Walker, M. Spezio, and D. Wilson. 1993 Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects Biotech. Bioengin. 42 1002–1013

    Article  CAS  Google Scholar 

  • Irwin, D., D.-H. Shin, S. Zhang, B. K. Barr, J. Sakon, P. A. Karplus, and D. B. Wilson. 1998 Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis J. Bacteriol. 180 1709–1714

    PubMed  CAS  Google Scholar 

  • Johnson, P., M. Joshi, P. Tomme, D. Kilburn, and L. McIntosh. 1996 Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi Cen C determined by nuclear magnetic resonance spectroscopy Biochemistry 35 14381–14394

    Article  PubMed  CAS  Google Scholar 

  • Jung, K. H., K. M. Lee, H. Kim, K. H. Yoon, S. H. Park, and M. Y. Pack. 1998 Cloning and expression of a Clostridium thermocellum xylanase gene in Escherichia coli Biochem. Molec. Biol. Intl. 44(2) 283–292

    Google Scholar 

  • Juy, M., A. G. Amit, P. M. Alzari, R. J. Poljak, M. Claeyssens, P. Béguin, and J.-P. Aubert. 1992 Crystal structure of a thermostable bacterial cellulose-degrading enzyme Nature 357 39–41

    Article  Google Scholar 

  • Karita, S., K. Sakka, and K. Ohmiya. 1997 Cellulosomes, cellulase complexes, of anaerobic microbes: Their structure models and functions In: R. Onodera, H. Itabashi, K. Ushida, H. Yano, and Y. Sasaki (Eds.) Rumen Microbes and Digestive Physiology in Ruminants Japanese Scientific Society Press and S. Karger Tokyo/Basle Germany 14 47–57

    Google Scholar 

  • Kataeva, I., X.-L. Li, H. Chen, S. K. Choi, and L. G. Ljungdahl. 1999aCloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: Evidence for gene duplication and recombination J. Bacteriol. 181 5288–5295

    PubMed  CAS  Google Scholar 

  • Kataeva, I., X.-L. Li, H. Chen, and L. G. Ljungdahl. 1999bCelK—a new cellobiohydrolase from Clostridium thermocellum cellulosome: Role of N-terminal cellulose-binding domain In: K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita, and T. Kimura (Eds.) Genetics, Biochemistry and Ecology of Cellulose Degradation Uni Publishers Tokyo 454–460

    Google Scholar 

  • Kidby, D. K., and D. J. Davidson. 1973 A convenient ferricyanide estimation of reducing sugars in the nanomole range Analyt. Biochem. 55(1) 321–325

    Article  Google Scholar 

  • Kuhad, R. C., A. Singh, and K.-E. Eriksson. 1997 Microorganisms and enzymes involved in the degradation of plant fiber cell walls Adv. Biochem. Engin. 57 45–125

    CAS  Google Scholar 

  • Lamed, R., E. Setter, and E. A. Bayer. 1983aCharacterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum J. Bacteriol. 156 828–836

    PubMed  CAS  Google Scholar 

  • Lamed, R., E. Setter, R. Kenig, and E. A. Bayer. 1983bThe cellulosome—a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities Biotechnol. Bioeng. Symp. 13 163–181

    CAS  Google Scholar 

  • Lamed, E., J. Naimark, E. Morgenstern, and E. A. Bayer. 1987aScanning electron microscopic delineation of bacterial surface topology using cationized ferritin J. Microbiol. Methods 7 233–240

    Article  Google Scholar 

  • Lamed, R., J. Naimark, E. Morgenstern, and E. A. Bayer. 1987bSpecialized cell surface structures in cellulolytic bacteria J. Bacteriol. 169 3792–3800

    PubMed  CAS  Google Scholar 

  • Lamed, R., and E. A. Bayer. 1988aThe cellulosome concept: Exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis In: J.-P. Aubert, P. Beguin, and J. Millet (Eds.) Biochemistry and Genetics of Cellulose Degradation Academic Press London 101–116

    Google Scholar 

  • Lamed, R., and E. A. Bayer. 1988bThe cellulosome of Clostridium thermocellum Adv. Appl. Microbiol. 33 1–46

    Article  Google Scholar 

  • Lamed, R., and E. A. Bayer. 1991 Cellulose degradation by thermophilic anaerobic bacteria In: C. H. Haigler and P. J. Weimer (Eds.) Biosynthesis and Biodegradation of Cellulose and Cellulose Materials Marcel Dekker New York NY 377–410

    Google Scholar 

  • Lamed, R., and E. A. Bayer. 1993 The cellulosome concept—a decade later! In: K. Shimada, S. Hoshino, K. Ohmiya, K. Sakka, Y. Kobayashi, and S. Karita (Eds.) Genetics, Biochemistry and Ecology of Lignocellulose Degradation Uni Publishers Tokyo 1–12

    Google Scholar 

  • Laurie, J. I., J. H. Clarke, A. Ciruela, C. B. Faulds, G. Williamson, H. J. Gilbert, J. E. Rixon, J. Millward-Sadler, and G. P. Hazlewood. 1997 The NodB domain of a multidomain xylanase from Cellulomonas fimi deacylates acetylxylan FEMS Microbiol. Lett. 148 261–264

    Article  CAS  Google Scholar 

  • Leibovitz, E., and P. Béguin. 1996 A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA J. Bacteriol. 178 3077–3084

    PubMed  CAS  Google Scholar 

  • Leibovitz, E., H. Ohayon, P. Gounon, and P. Béguin. 1997 Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA J. Bacteriol. 179 2519–2523

    PubMed  CAS  Google Scholar 

  • Lemaire, M., H. Ohayon, P. Gounon, T. Fujino, and P. Béguin. 1995 OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope J. Bacteriol. 177 2451–2459

    PubMed  CAS  Google Scholar 

  • Lemaire, M., I. Miras, P. Gounon, and P. Béguin. 1998 Identification of a region responsible for binding to the cell wall within the S-layer protein of Clostridium thermocellum Microbiology 144 211–217

    Article  PubMed  CAS  Google Scholar 

  • Lewis, N. G., and E. Yamamoto. 1990 Lignin: Occurrence, biogenesis and biodegradation Ann. Rev. Plant Physiol. Plant Molec. Biol. 41 455–496

    Article  CAS  Google Scholar 

  • Linder, M., and T. T. Teeri. 1997 The roles and function of cellulose-binding domains J. Biotechnol. 57 15–28

    Article  CAS  Google Scholar 

  • Liu, C. C., and R. H. Doi. 1998 Properties of exgS, a gene for a major subunit of the Clostridium cellulovorans cellulosome Gene 211 39–47

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G., and K.-E. Eriksson. 1985 Ecology of microbial cellulose degradation Adv. Microb. Ecol. 8 237–299

    Article  CAS  Google Scholar 

  • Lupas, A., H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister. 1994 Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis J. Bacteriol. 176 1224–1233

    PubMed  CAS  Google Scholar 

  • Ly, H. D., and S. G. Withers. 1999 Mutagenesis of glycosidases Ann. Rev. Biochem. 68 487–522

    Article  PubMed  CAS  Google Scholar 

  • Lynd, L. R., J. H. Cushman, R. J. Nichols, and C. E. Wyman. 1991 Fuel ethanol from cellulosic biomass Science 251 1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Lytle, B., B. F. Volkman, W. M. Westler, and J. H. D. Wu. 2000 Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy Arch. Biochem. Biophys. 379 237–244

    Article  PubMed  CAS  Google Scholar 

  • Lytle, B. L., B. F. Volkman, W. M. Westler, M. P. Heckman, and J. H. Wu. 2001 Solution structure of a type i dockerin domain, a novel prokaryotic, extracellular calcium-binding domain J. Molec. Biol. 307(3) 745–753

    Article  CAS  Google Scholar 

  • Marais, J. P., J. L. De Wit, and G. V. Quicke. 1966 A critical examination of the Nelson-Somogyi method for the determination of reducing sugars Analyt. Biochem. 15(3) 373–381

    Article  Google Scholar 

  • Mattinen, M.-L., M. Kontteli, J. Kerovuo, M. Linder, A. Annila, G. Lindeberg, T. Reinikainen, and T. Drakenberg. 1997 Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei Protein Sci. 6 294–303

    Article  PubMed  CAS  Google Scholar 

  • Matuschek, M., K. Sahm, A. Zibat, and H. Bahl. 1996 Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains Molec. Gen. Genet. 252(4) 493–496

    Google Scholar 

  • Mayer, F., M. P. Coughlan, Y. Mori, and L. G. Ljungdahl. 1987 Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy Appl. Environ. Microbiol. 53 2785–2792

    PubMed  CAS  Google Scholar 

  • McCarter, J. D., and S. G. Withers. 1994 Mechanisms of enzymatic glycoside hydrolysis Curr. Opin. Struct. Biol. 4 885–892

    Article  PubMed  CAS  Google Scholar 

  • Mechaly, A., S. Yaron, R. Lamed, H.-P. Fierobe, A. Belaich, J.-P. Belaich, Y. Shoham, and E. A. Bayer. 2000 Cohesin-dockerin recognition in cellulosome assembly: Experiment versus hypothesis Proteins 39 170–177

    Article  PubMed  CAS  Google Scholar 

  • Mechaly, A., H.-P. Fierobe, A. Belaich, J.-P. Belaich, R. Lamed, Y. Shoham, and E. A. Bayer. 2001 Cohesin-dockerin interaction in cellulosome assembly: A single hydroxyl group of a dockerin domain distinguishes between non-recognition and high-affinity recognition J. Biol. Chem. 276 9883–9888

    Article  PubMed  CAS  Google Scholar 

  • Miller, G. L. R., W. E. Blum, and A. L. Burton. 1960 Measurements of carboxymethylcellulase activity Analyt. Biochem. 2 127–132

    Article  Google Scholar 

  • Mohand-Oussaid, O., S. Payot, E. Guedon, E. Gelhaye, A. Youyou, and H. Petitdemange. 1999 The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: Evidence for cell-free cellulosome production J. Bacteriol. 181 4035–4040

    PubMed  CAS  Google Scholar 

  • Morag, E., E. A. Bayer, and R. Lamed. 1990 Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes J. Bacteriol. 172 6098–6105

    PubMed  CAS  Google Scholar 

  • Morag, E., I. Halevy, E. A. Bayer, and R. Lamed. 1991 Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum J. Bacteriol. 173 4155–4162

    PubMed  CAS  Google Scholar 

  • Morag, E., E. A. Bayer, G. P. Hazlewood, H. J. Gilbert, and R. Lamed. 1993 Cellulase SS (CelS) is synonymous with the major cellobiohydrolase (subunit S8) from the cellulosome of Clostridium thermocellum Appl. Biochem. Biotechnol. 43 147–151

    Article  PubMed  CAS  Google Scholar 

  • Morag, E., A. Lapidot, D. Govorko, R. Lamed, M. Wilchek, E. A. Bayer, and Y. Shoham. 1995 Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum Appl. Environ. Microbiol. 61 1980–1986

    PubMed  CAS  Google Scholar 

  • Navarro, A., M.-C. Chebrou, P. Béguin, and J.-P. Aubert. 1991 Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum Res. Microbiol. 142 927–936

    Article  PubMed  CAS  Google Scholar 

  • Notenboom, V., C. Birsan, R. Warren, S. Withers, and D. Rose. 1998 Exploring the cellulose/xylan specificity of the β-1,4-glycanase Cex from Cellulomonas fimi through crystallography and mutation Biochemistry 37 4751–4758

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya, K., K. Sakka, S. Karita, and T. Kimura. 1997 Structure of cellulases and their applications Biotechnol. Genet. Engin. Rev. 14 365–414

    CAS  Google Scholar 

  • O’Neill, G., S. H. Goh, R. A. Warren, D. G. Kilburn, and R. C. Miller. 1986 Structure of the gene encoding the exoglucanase of Cellulomonas fimi Gene 44(2–3) 325–30

    Article  Google Scholar 

  • O’Neill, R. A., A. Darvill, and P. Albersheim. 1989 A fluorescence assay for enzymes that cleave glycosidic linkages to produce reducing sugars Analyt. Biochem. 177(1) 11–5

    Article  Google Scholar 

  • O’Sullivan, A. C. 1997 Cellulose: The structure slowly unravels Cellulose 4 173–207

    Article  Google Scholar 

  • Pagès, S., A. Belaich, J.-P. Belaich, E. Morag, R. Lamed, Y. Shoham, and E. A. Bayer. 1997 Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain Proteins 29 517–527

    Article  PubMed  Google Scholar 

  • Parsiegla, G., M. Juy, C. Reverbel-Leroy, C. Tardif, J. P. Belaich, H. Driguez, and R. Haser. 1998 The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution EMBO J. 17 5551–5562

    Article  PubMed  CAS  Google Scholar 

  • Pegden, R. S., M. A. Larson, R. J. Grant, and M. Morrison. 1998 Adherence of the Gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins J. Bacteriol. 180 5921–5927

    PubMed  CAS  Google Scholar 

  • Puls, J., and J. Schuseil. 1993 Chemistry of hemicellulases: Relationship between hemicellulose structure and enzymes required for hydrolysis In: M. P. Coughlan and G. P. Hazlewood (Eds.) Hemicellulose and Hemicellulases Portland Press London 1–27

    Google Scholar 

  • Reese, R. T. 1976 History of the cellulase program at the U.S. Army Natick Development Center Biotechnol. Bioeng. Symp. 6 9–20

    PubMed  CAS  Google Scholar 

  • Reeves, R. A., M. D. Gibbs, D. D. Morris, K. R. Griffiths, D. J. Saul, and P. L. Bergquist. 2000 Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1 Appl. Environ. Microbiol. 66(4) 1532–1537

    Article  Google Scholar 

  • Reverbel-Leroy, C., S. Pagés, A. Belaich, J.-P. Belaich, and C. Tardif. 1997 The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: Purification and characterization of the recombinant form J. Bacteriol. 179 46–52

    PubMed  CAS  Google Scholar 

  • Rouvinen, J., T. Bergfors, T. Teeri, J. K. C. Knowles, and T. A. Jones. 1990 Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei Science 279 380–386

    Article  Google Scholar 

  • Rydlund, A., and O. Dahlman. 1997 Oligosaccharides obtained by enzymatic hydrolysis of birch kraft pulp xylan: Analysis by capillary zone electrophoresis and mass spectrometry Carbohydr. Res. 300 95–102

    Article  PubMed  CAS  Google Scholar 

  • Rye, C. S., and S. G. Withers. 2000 Glycosidase mechanisms Curr. Opin. Chem. Biol. 4 573–580

    Article  PubMed  CAS  Google Scholar 

  • Sakon, J., D. Irwin, D. B. Wilson, and P. A. Karplus. 1997 Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca Nature Struct. Biol. 4 810–818

    Article  PubMed  CAS  Google Scholar 

  • Salamitou, S., M. Lemaire, T. Fujino, H. Ohayon, P. Gounon, P. Béguin, and J.-P. Aubert. 1994aSubcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome J. Bacteriol. 176 2828–2834

    PubMed  CAS  Google Scholar 

  • Salamitou, S., O. Raynaud, M. Lemaire, M. Coughlan, P. Béguin, and J.-P. Aubert. 1994bRecognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA J. Bacteriol. 176 2822–2827

    PubMed  CAS  Google Scholar 

  • Saul, D. J., L. C. Williams, R. A. Grayling, L. W. Chamley, D. R. Love, and P. L. Bergquist. 1990 celB, a gene coding for a bifunctional cellulase from the extreme thermophile “Caldocellum saccharolyticum” Appl. Environ. Microbiol. 56(10) 3117–3124

    Google Scholar 

  • Schülein, M. 1997 Enzymatic properties of cellulases from Humicola insolens J. Biotechnol. 57 71–81

    Article  PubMed  Google Scholar 

  • Shen, H., A. Meinke, P. Tomme, H. G. Damude, E. Kwan, D. G. Kilburn, R. C. Miller Jr., R. A. J. Warren, and N. R. Gilkes. 1995 Cellulomonas fimi cellobiohydrolases In: J. N. Saddler and M. H. Penner (Eds.) Enzymatic Degradation of Insoluble Polysaccharides American Chemical Society Washington DC 174–196

    Google Scholar 

  • Shimon, L. J. W., E. A. Bayer, E. Morag, R. Lamed, S. Yaron, Y. Shoham, and F. Frolow. 1997 The crystal structure at 2.15 Å resolution of a cohesin domain of the cellulosome from Clostridium thermocellum Structure 5 381–390

    Article  PubMed  CAS  Google Scholar 

  • Shoham, Y., R. Lamed, and E. A. Bayer. 1999 The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides Trends Microbiol. 7 275–281

    Article  PubMed  CAS  Google Scholar 

  • Simpson, H. D., and F. Barras. 1999aFunctional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase J Bacteriol. 181(15) 4611–4616

    Google Scholar 

  • Simpson, P. J., D. N. Bolam, A. Cooper, A. Ciruela, G. P. Hazlewood, H. J. Gilbert, and M. P. Williamson. 1999bA family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity Structure Fold. Des. 7 853–864

    Article  PubMed  CAS  Google Scholar 

  • Sinnott, M. L. 1990 Catalytic mechanisms of enzymic glycosyl transfer Chem. Rev. 90 1171–1202

    Article  CAS  Google Scholar 

  • Sleat, R., R. A. Mah, and R. Robinson. 1984 Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans, sp. nov Appl. Environ. Microbiol. 48 88–93

    PubMed  CAS  Google Scholar 

  • Spinelli, S., H. P. Fierobe, A. Belaich, J. P. Belaich, B. Henrissat, and C. Cambillau. 2000 Crystal structure of a cohesin module from Clostridium cellulolyticum: Implications for dockerin recognition J. Molec. Biol. 304(2) 189–200

    Article  CAS  Google Scholar 

  • Srisodsuk, M., K. Kleman-Leyer, S. Keranen, T. K. Kirk, and T. T. Teeri. 1998 Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei Eur. J. Biochem. 251(3) 885–892

    Article  Google Scholar 

  • Stutzenberger, F. 1990 Bacterial cellulases In: W. M. Fogarty and C. T. Kelly (Eds.) Microbial Enzymes and Biotechnology Elsevier Applied Science London New York 37–70

    Chapter  Google Scholar 

  • Tamaru, Y., and R. H. Doi. 1999aThree surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE J. Bacteriol. 181 3270–3276

    PubMed  CAS  Google Scholar 

  • Tamaru, Y., C.-C. Liu, A. Ichi-ishi, L. Malburg, and R. H. Doi. 1999bThe Clostridium cellulovorans cellulosome and non-cellulosomal cellulases In: K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita, and T. Kimura (Eds.) Genetics, Biochemistry and Ecology of Cellulose Degradation Uni Publishers Tokyo 488–494

    Google Scholar 

  • Tamaru, Y., and R. H. Doi. 2000aThe engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal ManA J. Bacteriol. 182 244–247

    Article  PubMed  CAS  Google Scholar 

  • Tamaru, Y., S. Karita, A. Ibrahim, H. Chan, and R. H. Doi. 2000bA large gene cluster for the Clostridium cellulovorans cellulosome J Bacteriol. 182(20) 5906–5910

    Article  Google Scholar 

  • Tamaru, Y., and R. H. Doi. 2001 Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome Proc. Natl. Acad. Sci. USA 20 20

    Google Scholar 

  • Tavares, G. A., P. Béguin, and P. M. Alzari. 1997 The crystal structure of a type I cohesin domain at 1.7 Å resolution J. Molec. Biol. 273 701–713

    Article  PubMed  CAS  Google Scholar 

  • Teeri, T. T., T. Reinikainen, L. Ruohonen, T. A. Jones, and J. K. C. Knowles. 1992 Domain function in Trichoderma reesei cellulases J. Biotechnol. 24 169–176

    Article  CAS  Google Scholar 

  • Teeri, T. T. 1997 Crystalline cellulose degradation: New insight into the function of cellobiohydrolases Trends Biotechnol. 15 160–167

    Article  Google Scholar 

  • Te’o, V. S., D. J. Saul, and P. L. Bergquist. 1995 CelA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum Appl. Microbiol. Biotechnol. 43 291–296

    Article  PubMed  Google Scholar 

  • Timell, T. E. 1967 Recent progress in the chemistry of wood hemicelluloses Wood Sci. Technol. 1 45–70

    Article  CAS  Google Scholar 

  • Tokatlidis, K., S. Salamitou, P. Béguin, P. Dhurjati, and J.-P. Aubert. 1991 Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components FEBS Lett. 291 185–188

    Article  PubMed  CAS  Google Scholar 

  • Tokatlidis, K., P. Dhurjati, and P. Béguin. 1993 Properties conferred on Clostridium thermocellum endoglucanase CelC by grafting the duplicated segment of endoglucanase CelD Protein Engin. 6(8) 947–952

    Article  Google Scholar 

  • Tomme, P., R. A. J. Warren, and N. R. Gilkes. 1995aCellulose hydrolysis by bacteria and fungi Adv. Microb. Physiol. 37 1–81

    Article  PubMed  CAS  Google Scholar 

  • Tomme, P., R. A. J. Warren, R. C. Miller, D. G. Kilburn, and N. R. Gilkes. 1995bCellulose-binding domains: Classification and properties In: J. M. Saddler and M. H. Penner (Eds.) Enzymatic Degradation of Insoluble Polysaccharides American Chemical Society Washington DC 142–161

    Google Scholar 

  • Tomme, P., A. L. Creagh, D. G. Kilburn, and C. A. Haynes. 1996 Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC Biochemistry 35 13885–13894

    Article  PubMed  CAS  Google Scholar 

  • Tormo, J., R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham, and T. A. Steitz. 1996 Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose EMBO J. 15 5739–5751

    PubMed  CAS  Google Scholar 

  • Tull, D., and S. G. Withers. 1994 Mechanisms of cellulases and xylanases: A detailed kinetic study of the exo-beta-1,4-glycanase from Cellulomonas fimi Biochemistry 33(20) 6363–6370

    Article  Google Scholar 

  • van Tilbeurgh, H., G. Pettersson, R. Bhikabhai, H. De Boeck, and M. Claeyssens. 1985 Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1,4-beta-glucan cellobiohydrolase II Eur. J. Biochem. 148(2) 329–34

    Article  Google Scholar 

  • Viikari, L., and T. Teeri. 1997 In: L. Viikari and T. Teeri (Eds.) Biochemistry and Genetics of Cellulases and Hemicellulases and Their Application

    Google Scholar 

  • Vlasenko, E. Y., A. I. Ryan, C. F. Shoemaker, and S. P. Shoemaker. 1998 The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-β-D-glucanases on carboxymethylcellulose: A comparative evaluation of three methods Enzyme Microb. Technol. 23 350–359

    Article  CAS  Google Scholar 

  • Waffenschmidt, S., and L. Jaenicke. 1987 Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate Analyt. Biochem. 165 337–340

    Article  PubMed  CAS  Google Scholar 

  • Wang, W. K., K. Kruus, and J. H. D. Wu. 1993 Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase SS (CelS), a major cellulosome component J. Bacteriol. 175 1293–1302

    PubMed  CAS  Google Scholar 

  • Wang, W. K., K. Kruus, and J. H. D. Wu. 1994 Cloning and expression of the Clostridium thermocellum cellulase celS gene in Escherichia coli Appl. Microbiol. Biotechnol. 42 346–352

    PubMed  CAS  Google Scholar 

  • Warren, R. A. J. 1996 Microbial hydrolysis of polysaccharides Ann. Rev. Microbiol. 50 183–212

    Article  CAS  Google Scholar 

  • White, A., and D. R. Rose. 1997 Mechanism of catalysis by retaining β-glycosyl hydrolases Curr. Opin. Struct. Biol. 7 645–651

    Article  PubMed  CAS  Google Scholar 

  • Whittle, D. J., D. G. Kilburn, R. A. Warren, and R. C. Miller. 1982 Molecular cloning of a Cellulomonas fimi cellulose gene in Escherichia coli Gene 17(2) 139–145

    Article  Google Scholar 

  • Williams, S. J., and S. G. Withers. 2000 Glycosyl fluorides in enzymatic reactions Carbohydr. Res. 327 27–46

    Article  PubMed  CAS  Google Scholar 

  • Williamson, M. P., P. J. Simpson, D. N. Bolam, G. P. Hazlewood, A. Ciruela, A. Cooper, and H. J. Gilbert. 1999 How the N-terminal xylan-binding domain from C. fimi xylanase D recognises xylan In: H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (Eds.) Recent Advances in Carbohydrate Bioengineering The Royal Society of Chemistry Cambridge 212–220

    Google Scholar 

  • Wilson, D. B. 1992 Biochemistry and genetics of actinomycete cellulases Crit. Rev. Biotechnol. 12 45–63

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. B., and D. C. Irwin. 1999 Genetics and properties of cellulases Adv. Biochem. Engin. 65 1–21

    CAS  Google Scholar 

  • Withers, S. G., and R. Aebersold. 1995 Approaches to labeling and identification of active site residues in glycosidases Protein Sci. 4(3) 361–372

    Google Scholar 

  • Withers, S. G. 2001 Mechanisms of glycosyl transferases and hydrolases Carbohydr. Res. 44 325–337

    CAS  Google Scholar 

  • Wood, W. A., and S. T. Kellogg. 1988 In: W. A. Wood and S. T. Kellogg (Eds.) Biomass. Part A: Cellulose and Hemicellulose Academic Press San Diego CA 160

    Google Scholar 

  • Wu, J. H. D., W. H. Orme-Johnson, and A. L. Demain. 1988 Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystaline cellulose Biochemistry 27 1703–1709

    Article  CAS  Google Scholar 

  • Yagüe, E., P. Béguin, and J.-P. Aubert. 1990 Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum Gene 89 61–67

    Article  PubMed  Google Scholar 

  • Yaron, S., E. Morag, E. A. Bayer, R. Lamed, and Y. Shoham. 1995 Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome FEBS Lett. 360 121–124

    Article  PubMed  CAS  Google Scholar 

  • Zechel, D. L., and S. G. Withers. 2000 Glycosidase mechanisms: Anatomy of a finely tuned catalyst Acc. Chem. Res. 33(1) 11–18

    Google Scholar 

  • Zou, J., G. J. Kleywegt, J. Stahlberg, H. Driguez, W. Nerinckx, M. Claeyssens, A. Koivula, T. T. Teeri, and T. A. Jones. 1999 Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei Struct. Fold. Des. 7(9) 1035–1045

    Article  Google Scholar 

  • Zverlov, V. V., S. Mahr, K. Riedel, and K. Bronnenmeier. 1998aProperties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains Microbiology 144 457–465

    Article  PubMed  CAS  Google Scholar 

  • Zverlov, V. V., G. V. Velikodvorskaya, W. H. Schwarz, K. Bronnenmeier, J. Kellermann, and W. L. Staudenbauer. 1998bMultidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA J. Bacteriol. 180 3091–3099

    PubMed  CAS  Google Scholar 

  • Zverlov, V. V., G. V. Velikodvorskaya, W. H. Schwarz, J. Kellermann, and W. L. Staudenbauer. 1999 Duplicated Clostridium thermocellum cellobiohydrolase gene encoding cellulosomal subunits S3 and S5 Appl. Microbiol. Biotechnol. 51 852–859

    Article  PubMed  CAS  Google Scholar 

  • Zverlov, V. V., I. Y. Volkov, G. A. Velikodvorskaya, and W. H. Schwarz. 2001 The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: Differences in beta-glucan binding within family CBM4 Microbiology 147(3) 621–629

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Bayer, E.A., Shoham, Y., Lamed, R. (2006). Cellulose-decomposing Bacteria and Their Enzyme Systems. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_19

Download citation

Publish with us

Policies and ethics