Cell-Cell Interactions

  • Dale KAISER

Discovery and Distribution

Roland Thaxter published a time bomb in December 1892. He reported that Chondromyces crocatus, before then considered an imperfect fungus because of the morphological complexity of its fruiting body, was actually a bacterium. Thaxter had discovered the unicellular vegetative stage of C. crocatus; the cells he found were relatively short and they divided by binary fission, unlike the mycelium of a fungus. C. crocatus was, he concluded, a “communal bacterium.” Thaxter described the locomotion, swarming, aggregation and process of fruiting body formation of C. crocatus and its relatives, which are collectively called myxobacteria, with an accuracy that has survived 100 years of scrutiny. He described the behavior of myxobacteria in fructification in terms of a “course of development” because it was “a definitely recurring aggregation of individuals capable of concerted action toward a definite end” (Thaxter, 1892). These qualities of an integrated multicellular...


Fruiting Body Quorum Sensor Homoserine Lactone Plasmid Transfer Direct Physical Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Achtman, M., G. Morelli, and S. Schwuchow. 1978 Cell-cell interactions in conjugating Escherichia coli: Role of F pili and fate of mating aggregates J. Bacteriol. 135 1053–1061PubMedGoogle Scholar
  2. Adler, J. 1966 Chemotaxis in bacteria Science 153 708–716PubMedCrossRefGoogle Scholar
  3. Adler, J. 1969 Chemoreceptors in bacteria Science 166 1588–1597PubMedCrossRefGoogle Scholar
  4. Alberti, L., and R. M. Harshey. 1990 Differentiation of Serratia marcesens 274 into swimmer and swarmer cells J. Bacteriol. 172 4322–4328PubMedGoogle Scholar
  5. Allison, C., H.-C. Lai, D. Gygi, and C. Hughes. 1993 Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells Molec. Microbiol. 8 53–60CrossRefGoogle Scholar
  6. Atsumi, T., L. McCarter, and Y. Imae. 1992 Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces Nature 355 182–182PubMedCrossRefGoogle Scholar
  7. Baker, M. 1994 Myxococcus xanthus C-factor, a morphogenetic paracrine signal, is homologous to E. coli 3-ketoacyl-acyl carrier protein reductase and human 17 β-hydroxysteroid dehydrogenase Biochem J. 301 311–312PubMedGoogle Scholar
  8. Barkai, N., and S. Leibler. 1997 Robustness in simple biochemical networks Nature 387 913–917PubMedCrossRefGoogle Scholar
  9. Bates, S., A. M. Cashmore, and B. M. Wilkins. 1998 IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: Involvement of the Tra2 mating system J. Bacteriol. 180 6538–6543PubMedGoogle Scholar
  10. Baumler, A. J. 1997 The record of horizontal gene transfer in Salmonella Trends in Microbiology 5 318–322PubMedCrossRefGoogle Scholar
  11. Bieber, D., S. W. Ramer, C.-Y. Wu, W. J. Murray, T. Tobe, and R. Fernandez. 1998 Type IV pili, transient bacterial aggregates and virulence in enteropathogenic Escherichia coli Science 280 2114–2118PubMedCrossRefGoogle Scholar
  12. Blackhart, B. D., and D. Zusman. 1985 The frizzy genes of Myxococcus xanthus control directional movement of gliding motility Proc. Natl. Acad. Sci. USA 82 8767–8770PubMedCrossRefGoogle Scholar
  13. Bonner, J. T. 1952 Morphogenesis, an essay on development Princeton University Press Princeton NJGoogle Scholar
  14. Bradley, D. E. 1980 A function of Pseudomonas aeruginosa PAO pili: Twitching motility Can. J. Microbiol. 126 146–154CrossRefGoogle Scholar
  15. Brenner, M. P., L. S. Levitov, and E. O. Budrene. 1998 Physical mechanisms for chemotactic pattern formation by bacteria Biophys. J. 74 1677–1693PubMedCrossRefGoogle Scholar
  16. Budrene, E. O., and H. C. Berg. 1995 Dynamics of formation of symmetrical patterns by chemotactic bacteria Nature 376 49–53PubMedCrossRefGoogle Scholar
  17. Buikema, W. J., and R. Haselkorn. 1993 Molecular genetics of cyanobacterial development Ann. Rev. Plant Physiol. Plant Mol. Biol. 44 33–52CrossRefGoogle Scholar
  18. Burkart, M., A. Toguchi, and R. M. Harshey. 1998 The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli Proc. Natl. Acad. Sci. USA 95 2568–2573PubMedCrossRefGoogle Scholar
  19. Cashel, M., D. R. Gentry, V. J. Hernandez, and D. Vinella. 1996 The stringent response In: F. Neidhardt (Ed.) Escherichia coli and Salmonella ASM Press Washington DCGoogle Scholar
  20. Chang, B.-Y., and M. Dworkin. 1994 Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus J. Bacteriol. 176 7190–7196PubMedGoogle Scholar
  21. Clewell, D. B. 1999 Sex pheromone systems in Enterococci In: G. M. Dunny and S. C. Winans (Eds.) Cell-cell Signaling in Bacteria ASM Press Washington, DC 47–65Google Scholar
  22. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. 1995 Microbial biofilms Ann. Rev. Microbiol. 49 711–745CrossRefGoogle Scholar
  23. Cutting, S., A. Driks, R. Schmidt, B. Kunkel, and R. Losick. 1991 Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-σK processing in Bacillus subtilis Genes Dev. 5 456–466PubMedCrossRefGoogle Scholar
  24. Dana, J. R., and L. J. Shimkets. 1993 Regulation of cohesion-dependent cell interactions in Myxococcus xanthus J. Bacteriol. 175 3636–3647PubMedGoogle Scholar
  25. Das, A. K., P. T. W. Cohen, and D. Barford. 1998 The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions EMBO Journal 17 1192–1199PubMedCrossRefGoogle Scholar
  26. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998 The involvement of cell-to-cell signals in the development of a bacterial biofilm Science 280 295–298PubMedCrossRefGoogle Scholar
  27. Davis, J. M., J. Mayor, and L. Plamann. 1995 A missense mutation in rpoD results in an A-signaling defect in Myxococcus xanthus Molec. Microbiol. 18 943–952CrossRefGoogle Scholar
  28. Dubnau, D. 1991 Genetic competence in Bacillus subtilis Microbiol. Rev. 55 395–424PubMedGoogle Scholar
  29. Dunny, G. M. 1990 Genetic functions and cell-cell interactions in the pheromone-inducible plasmid transfer system of Enterococcus faecalis Molec. Microbiol. 4 689–696CrossRefGoogle Scholar
  30. Durrenberger, M. B., W. Villiger, and T. Bachi. 1991 Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria J. Struct. Biol. 107 146–156PubMedCrossRefGoogle Scholar
  31. Dworkin, M. 1973 Cell-cell interactions in the Myxobacteria Symp. Soc. Gen. Microbiol. 23 125–147Google Scholar
  32. Dworkin, M. 1999 Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus BioEssays 21 590–595PubMedCrossRefGoogle Scholar
  33. Eberhard, A., A. L. Burlingame, C. Eberhard, G. L. Kenyon, K. H. Nealson, and N. J. Oppenheim. 1981 Structural identification of autoinducer of Photobacterium fischeri luciferase Biochemistry 20 2444–2449PubMedCrossRefGoogle Scholar
  34. Ellehauge, E., M. Norregaard-Madsen, and L. Søgaard-Anderson. 1998 The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals in M. xanthus development Molec. Microbiol. 30 807–813CrossRefGoogle Scholar
  35. Engebrecht, J., K. H. Nealson, and M. Silverman. 1983 Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri Cell 32 773–781PubMedCrossRefGoogle Scholar
  36. Engebrecht, J., and M. Silverman. 1986 Regulation of expression of bacterial genes for bioluminescence Genet. Eng. 8 31–44CrossRefGoogle Scholar
  37. Farrand, S. K. 1993 Conjugal transfer of Agrobacterium plasmids In: D. B. Clewell (Ed.) Bacterial Conjugation Plenum Press New York NYGoogle Scholar
  38. Fontes, M., and D. Kaiser. 1999 Myxococcus cells respond to elastic forces in their substrate Proc. Natl. Acad. Sci. USA 96 8052–8057PubMedCrossRefGoogle Scholar
  39. Forest, K. T., and J. A. Tainer. 1997 Type IV pilus structure: outside to inside and top to bottom—a minireview Gene 192 165–169PubMedCrossRefGoogle Scholar
  40. Frey, J., and M. Bagdasarian. 1989 The molecular biology of IncQ plasmids In: C. M. Thomas (Ed.) Promiscuous plasmids of Gram-negative bacteria Academic Press New York NY 79–94Google Scholar
  41. Fuqua, W. C., S. C. Winans, and E. P. Greenberg. 1994 Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators J. Bacteriol. 176 269–275PubMedGoogle Scholar
  42. Furness, R. B., G. M. Fraser, N. A. Hay, and C. Hughes. 1997 Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly J. Bacteriol. 179 5585–5588PubMedGoogle Scholar
  43. Galli, D., R. Wirth, and G. Wanner. 1989 Identification of aggregation substances of Enterococcus faecalis cells after induction by sex pheromones Arch. Microbiol. 151 486–490PubMedCrossRefGoogle Scholar
  44. Galli, D., and R. Wirth. 1991 Comparative analysis of Enterococcus faecalis sex pheromone plasmids identifies a single homologous DNA region which codes for aggregation substance J. Bacteriol. 173 3029–3033PubMedGoogle Scholar
  45. Gorski, L., and D. Kaiser. 1998 Targeted mutagenesis of sigma-54 activator proteins in Myxococcus xanthus J. Bacteriol. 180 5896–5905PubMedGoogle Scholar
  46. Groisman, E. A., and H. Ochman. 1997 How Salmonella became a pathogen Trends Microbiol. 5 343–349PubMedCrossRefGoogle Scholar
  47. Hagen, D. C., A. P. Bretscher, and D. Kaiser. 1978 Synergism between morphogenetic mutants of Myxococcus xanthus Dev. Biol. 64 284–296PubMedCrossRefGoogle Scholar
  48. Harris, B. Z., D. Kaiser, and M. Singer. 1998 The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus Genes Dev. 12 1022–1035PubMedCrossRefGoogle Scholar
  49. Harshey, R. M. 1994 Bees aren’t the only ones: Swarming in Gram-negative bacteria Molec. Microbiol. 13 389–394CrossRefGoogle Scholar
  50. Harshey, R. M., and T. Matsuyama. 1994 Dimorphic transition in E. coli and S. typhimurium: Surface-induced differentiation into hyperflagellate swarmer cells Proc. Natl. Acad. Sci. USA 91 8631–8634PubMedCrossRefGoogle Scholar
  51. Hartl, D. L., A. R. Lohe, and E. R. Lozovskaya. 1997 Modern thoughts on an ancyent marinere: Function, evolution, regulation Ann. Rev. Genet. 31 337–358PubMedCrossRefGoogle Scholar
  52. Hartzell, P. L. 1997 Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase Proc. Natl. Acad. Sci. USA 94 9881–9886PubMedCrossRefGoogle Scholar
  53. Hastings, J. W., and E. P. Greenberg. 1999 Quorum sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria J. Bacteriol. 181 2667–2668PubMedGoogle Scholar
  54. Havarstein, L. S., and D. A. Morrison. 1999 Quorum sensing and peptide pheromones in streptococcal competence for genetic transformation In: G. M. Dunny, and S. C. Winans (Eds.) Cell-cell Signaling in Bacteria ASM Press Washington DC 9–26Google Scholar
  55. Hay, N. A., D. J. Tipper, D. Gygi, and C. Hughes. 1997 A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator J. Bacteriol. 179 4741–4746PubMedGoogle Scholar
  56. Heineman, J. A., and G. F. Sprague. 1989 Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast Nature 340 205–209CrossRefGoogle Scholar
  57. Henrichsen, J. 1972 Bacterial surface translocation: a survey and a classification Bacteriol. Rev. 36 478–503PubMedGoogle Scholar
  58. Henrichsen, J. 1975 Twitching motility and its mechanism Acta Path. Microbiol. Scand. B83 187–190Google Scholar
  59. Henrichsen, J. 1983 Twitching motility Ann. Rev. Microbiol. 37 81–93CrossRefGoogle Scholar
  60. Herriott, R. M., E. M. Meyer, and M. Vogt. 1970 Defined nongrowth media for stage II development of competence in Haemophilus influenzae J. Bacteriol. 101 517–525PubMedGoogle Scholar
  61. Herzer, P. J., S. Inouye, M. Inouye, and T. S. Whittam. 1990 Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli J. Bacteriol. 172 6175–6181PubMedGoogle Scholar
  62. Hoch, J. A., and T. J. Silhavy. 1995 Two component signal transduction ASM Press, Washington DC 1–504Google Scholar
  63. Hodgkin, J., and D. Kaiser. 1977 Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus Proc. Natl. Acad. Sci. USA 74 2938–2942PubMedCrossRefGoogle Scholar
  64. Hodgkin, J., and D. Kaiser. 1979 Genetics of Gliding Motility in M. xanthus (Myxobacterales): Genes Controlling Movement of Single Cells Mol. Gen. Genet. 171 167–176CrossRefGoogle Scholar
  65. Hodgkin, J., and D. Kaiser. 1979 Genetics of gliding motility in M. xanthus (Myxobacterales): Two gene systems control movement Mol. Gen. Genet. 171 177–191CrossRefGoogle Scholar
  66. Hong, S.-B., I. Hwang, Y. Dessaux, P. Guyon, K.-S. Kim, and S. K. Farra. 1997 A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains J. Bacteriol. 179 4831–4840PubMedGoogle Scholar
  67. Hwang, I., P. L. Li, L. Zhang, K. R. Piper, D. M. Cook, M. E. Tate, and S. K. Farra. 1994 TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer Proc. Natl. Acad. Sci. USA 91 4639–4643PubMedCrossRefGoogle Scholar
  68. Inouye, M., S. Inouye, and D. Zusman. 1979 Gene expression during development of Myxococcus xanthus: Pattern of protein synthesis Devel. Biol. 68 579–591CrossRefGoogle Scholar
  69. Jelsbak, L., and L. Søgaard-Andersen. 1999 The cell-surface associated C-signal induces behavioral changes in individual M. xanthus cells during fruiting body morphogenesis Proc. Natl. Acad. Sci. USA 96 5031–5036PubMedCrossRefGoogle Scholar
  70. Kado, C. 1998 Agrobacterium-mediated horizontal gene transfer In: J. K. Setlow (Ed.) Genetic Engineering Plenum Press New York NYGoogle Scholar
  71. Kahn, M. E., F. Barany, and H. O. Smith. 1983 Transformasomes: Specialized membranous structures that protect DNA during Haemophilus transformation Proc. Natl. Acad. Sci. USA 80 6927–6931PubMedCrossRefGoogle Scholar
  72. Kaiser, D. 1979 Social gliding is correlated with the presence of pili in Myxococcus xanthus Proc. Natl. Acad. Sci. USA 76 5952–5956PubMedCrossRefGoogle Scholar
  73. Kaiser, D., and C. Crosby. 1983 Cell movement and its coordination in swarms of Myxococcus xanthus Cell Motility 3 227–245CrossRefGoogle Scholar
  74. Kaiser, D. 1996 Bacteria also vote Science 272 1598–1599PubMedCrossRefGoogle Scholar
  75. Kaplan, H. B., and E. P. Greenberg. 1985 Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system J. Bacteriol. 163 1210–1214PubMedGoogle Scholar
  76. Kaplan, H. B., and E. P. Greenberg. 1987 Overproduction and purification of the luxR gene product: The transcriptional activation of the Vibrio fischeri luminescence system Proc. Natl. Acad. Sci. USA 84 6639–6643PubMedCrossRefGoogle Scholar
  77. Kawagishi, I., M. Imagawa, Y. Imae, L. McCarter, and M. Homma. 1996 The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression Molec. Microbiol. 20 693–699CrossRefGoogle Scholar
  78. Keseler, I. M., and D. Kaiser. 1995 An early A-signal-dependent gene in Myxococcus xanthus has a sigma-54-like promoter J. Bacteriol. 177 4638–4644PubMedGoogle Scholar
  79. Kim, S. K., and D. Kaiser. 1990 C-factor: A cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus Cell 61 19–26PubMedCrossRefGoogle Scholar
  80. Kim, S. K., and D. Kaiser. 1990 Cell alignment required in differentiation of Myxococcus xanthus Science 249 926–928PubMedCrossRefGoogle Scholar
  81. Kim, S. K., and D. Kaiser. 1990 Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus Genes Dev. 4 896–905PubMedCrossRefGoogle Scholar
  82. Kim, S. K., and D. Kaiser. 1990 Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein Proc. Natl. Acad. Sci. USA 87 3635–3639PubMedCrossRefGoogle Scholar
  83. Kim, S. K., and D. Kaiser. 1991 C-factor has distinct aggregation and sporulation thresholds during Myxococcus development J. Bacteriol. 173 1722–1728PubMedGoogle Scholar
  84. Kimsey, H. H., and D. Kaiser. 1991 Targeted disruption of the Myxococcus xanthus orotidine 5’-monophosphate decarboxylase gene: Effects on growth and fruiting-body development J. Bacteriol. 173 6790–6797PubMedGoogle Scholar
  85. Kingsman, A., and N. Willetts. 1978 The requirements for conjugal DNA synthesis in the donor strain during Flac transfer J. Molec. Biol. 122 287–300PubMedCrossRefGoogle Scholar
  86. Knutton, S., R. K. Shaw, R. P. Anantha, M. S. Donnenberg, and A. A. Zorgani. 1999 The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal Molec. Microbiol. 33 499–509CrossRefGoogle Scholar
  87. Kroos, L., A. Kuspa, and D. Kaiser. 1986 A global analysis of developmentally regulated genes in Myxococcus xanthus Dev. Biol. 117 252–266PubMedCrossRefGoogle Scholar
  88. Kroos, L., P. Hartzell, K. Stephens, and D. Kaiser. 1988 A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development Genes Dev. 2 1677–1685PubMedCrossRefGoogle Scholar
  89. Kroos, L., B. Kunkel, and R. Losick. 1989 Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor Science 243 526–529PubMedCrossRefGoogle Scholar
  90. Kroos, L., B. Zhang, H. Ichikawa, and U.-T. N. Yu. 1999 Control of s factor activity during Bacillus subtilis sporulation Molec. Microbiol. 31 1285–1294CrossRefGoogle Scholar
  91. Kuhlwein, H., and H. Reichenbach. 1968 Swarming and morphogenesis in Myxobacteria Film C893/1965 Inst. Wiss. Film GöttingenGoogle Scholar
  92. Kuner, J., and D. Kaiser. 1982 Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus J. Bacteriol. 151 458–461PubMedGoogle Scholar
  93. Kuspa, A., L. Kroos, and D. Kaiser. 1986 Intercellular signaling is required for developmental gene expression in Myxococcus xanthus Dev. Biol. 117 267–276PubMedCrossRefGoogle Scholar
  94. Kuspa, A., L. Plamann, and D. Kaiser. 1992 Identification of heat-stable A-factor from Myxococcus xanthus J. Bacteriol. 174 3319–3326PubMedGoogle Scholar
  95. Kuspa, A., L. Plamann, and D. Kaiser. 1992 A-signaling and the cell density requirement for Myxococcus xanthus development J. Bacteriol. 174 7360–7369PubMedGoogle Scholar
  96. Lampson, B. C. 1993 Retron elements of the Myxobacteria In: M. Dworkin, and D. Kaiser (Eds.) Myxobacteria II ASM Press Washington DC 109–128Google Scholar
  97. Lazazzera, B. A., T. Palmer, J. Quisel, and A. D. Grossman. 1999 Cell density control of gene expression and development in Bacillus subtilis In: G. M. Dunny, and S. C. Winans (Eds.) Cell-cell Signaling in Bacteria ASM Press Washington DC 27–46Google Scholar
  98. Lee, K., and L. J. Shimkets. 1994 Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants J. Bacteriol. 176 2200–2209PubMedGoogle Scholar
  99. Lee, B.-U., K. Lee, J. Mendez, and L. J. Shimkets. 1995 A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)+-containing protein Genes Dev. 9 2964–2973PubMedCrossRefGoogle Scholar
  100. Li, S., B. U. Lee, and L. Shimkets. 1992 csgA expression entrains Myxococcus xanthus development Genes and Dev. 6 401–410PubMedCrossRefGoogle Scholar
  101. Li, Y., and L. Plamann. 1996 Purification and phosphorylation of Myxococcus xanthus AsgA protein J. Bacteriol. 178 289–292PubMedGoogle Scholar
  102. Lindberg, A. A. 1973 Bacteriophage receptors Ann. Rev. Microbiol. 27 205–241CrossRefGoogle Scholar
  103. Long, S. R., and B. J. Staskawicz. 1993 Prokaryotic plant parasites Cell 73 921–935PubMedCrossRefGoogle Scholar
  104. Macnab, R. M. 1987 Motility and Chemotaxis In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology ASM Press Washington DC 732–759Google Scholar
  105. Macnab, R. M. 1996 Flagella and motility In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology ASM Press Washington DC 123–145Google Scholar
  106. Manning, P. A., and T. F. Meyer. 1997 Type-4 pili: biogenesis, adhesins, protein export and DNA import Gene 192 1–198CrossRefGoogle Scholar
  107. Manoil, C., and D. Kaiser. 1980 Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation J. Bacteriol. 141 297–304PubMedGoogle Scholar
  108. Manoil, C., and J. Rosenbusch. 1982 Conjugation-deficient mutants of Escherichia coli distinguish classes of functions of the outer membrane OmpA protein Mol. Gen. Genet. 187 148–156PubMedCrossRefGoogle Scholar
  109. Mattick, J. S., C. B. Whitchurch, and R. A. Alm. 1996 The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa—a review Gene 179 147–155PubMedCrossRefGoogle Scholar
  110. Mazodier, P., and J. Davies. 1991 Gene transfer between distantly related bacteria Ann. Rev. Genet. 25 147–171PubMedCrossRefGoogle Scholar
  111. McBride, M. J., R. A. Weinberg, and D. R. Zusman. 1989 Frizzy aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria Proc. Natl. Acad. Sci. USA 86 424–428PubMedCrossRefGoogle Scholar
  112. McCarter, L., M. Hilmen, and M. Silverman. 1988 Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus Cell 54 345–351PubMedCrossRefGoogle Scholar
  113. Meighen, E. A. 1994 Genetics of bacterial bioluminescence Ann. Rev. Genet. 28 117–139PubMedCrossRefGoogle Scholar
  114. Mergaert, P., M. V. Montagu, and M. Holsters. 1997 Molecular mechanisms of Nod factor diversity Molec. Microbiol. 25 811–817CrossRefGoogle Scholar
  115. Mori, M., Y. Sakagami, Y. Ishii, A. Isogai, C. Kitada, M. Fujino, J. C. Adsit, G. M. Dunny, and A. Suzu. 1988 Structure of cCF10, a peptide sex pheromone which induces conjugative transfer of the Streptococcus faecalis tetracycline resistance plasmid, pCF10 J. Biol. Chem. 263 14574–14578PubMedGoogle Scholar
  116. Murooka, Y., and T. Harada. 1979 Expansion of the host range of coliphage P1 and gene transfer from enteric bacteria to other Gram-negative bacteria J. Appl. Environ. Microbiol. 38 754–757Google Scholar
  117. Nealson, K. H., and J. W. Hastings. 1979 Bacterial bioluminescence: its control and ecological significance Microbiol. Rev. 43 496–518PubMedGoogle Scholar
  118. O’Toole, G. A., and R. Kolter. 1998 Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis Molec. Microbiol. 28 449–461CrossRefGoogle Scholar
  119. Ogawa, M., S. Fujitani, X. Mao, S. Inouye, and T. Komano. 1996 FruA, a putative transcription factor essential for the development of Myxococcus xanthus Molec. Microbiol. 22 757–767CrossRefGoogle Scholar
  120. Ottow, J. C. G. 1975 Ecology, physiology, and genetics of fimbriae and pili Ann. Rev. Microbiol. 29 79–108CrossRefGoogle Scholar
  121. Parge, H. E., K. T. Forest, M. J. Hickey, D. A. Christensen, E. D. Getzoff, and J. A. Tainer. 1995 Structure of the fibre-forming protein pilin at 2.6Å resolution Nature 378 32–38PubMedCrossRefGoogle Scholar
  122. Piper, K. R., S. Beck von Bodman, and S. K. Farrand. 1993 Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction Nature 362 448–450PubMedCrossRefGoogle Scholar
  123. Plamann, L., A. Kuspa, and D. Kaiser. 1992 Proteins that rescue A-signal-defective mutants of Myxococcus xanthus J. Bacteriol. 174 3311–3318PubMedGoogle Scholar
  124. Plamann, L., J. M. Davis, B. Cantwell, and J. Mayor. 1994 Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus J. Bacteriol. 176 2013–2020PubMedGoogle Scholar
  125. Plamann, L., and H. B. Kaplan. 1999 Cell-density sensing during early development in Myxococcus xanthus In: G. M. Dunny, and S. C. Winans (Eds.) Cell-cell Signaling in Bacteria ASM Press Washington DC 67–82Google Scholar
  126. Pruss, B. M., and P. Matsumura. 1996 A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division J. Bacteriol. 178 668–674PubMedGoogle Scholar
  127. Qualls, G. T., K. Stephens, and D. White. 1978 Morphogenetic movements and multicellular development in the fruiting Myxobacterium, Stigmatella aurantiaca Dev. Biol. 66 270–274PubMedCrossRefGoogle Scholar
  128. Quinlan, M. S., and K. B. Raper. 1965 Development of the myxobacteria Hdb. Pflanzenphysiol. 15 596–611Google Scholar
  129. Ramaswamy, S., M. Dworkin, and J. Downard. 1997 Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding J. Bacteriol. 179 2863–2871PubMedGoogle Scholar
  130. Reichenbach, H., and M. Dworkin. 1981 The order Myxobacterales In: M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (Eds.) [{}] The Prokaryotes Springer-Verlag Berlin 328–355Google Scholar
  131. Reichenbach, H. 1984 Myxobacteria: A most peculiar group of social prokaryotes In: E. Rosenberg (Ed.) Myxobacteria Springer-Verlag New York NY 1–50CrossRefGoogle Scholar
  132. Reichenbach, H. 1993 Biology of the Myxobacteria: Ecology and taxonomy In: M. Dworkin, and D. Kaiser (Eds.) Myxobacteria II ASM Press Washington DC 13–62Google Scholar
  133. Rice, S. A., and B. C. Lampson. 1995 Phylogenetic comparison of retron elements among the myxobacteria: Evidence for vertical inheritance J. Bacteriol. 177 37–45PubMedGoogle Scholar
  134. Rodriguez, A., and A. Spormann. 1999 Genetic and molecular analysis of cglB, a gene essential for single cell gliding in Myxococcus xanthus J. Bacteriol. 181 4381–4390PubMedGoogle Scholar
  135. Rodriguez-Soto, J. P., and D. Kaiser. 1997 Identification and localization of the tgl protein, which is required for Myxococcus xanthus social motility J. Bacteriol. 179 4372–4381PubMedGoogle Scholar
  136. Rodriguez-Soto, J. P., and D. Kaiser. 1997 The tgl gene: social motility and stimulation in Myxococcus xanthus J. Bacteriol. 179 4361–4371PubMedGoogle Scholar
  137. Rosenberg, E., K. Keller, and M. Dworkin. 1977 Cell-density dependent growth of Myxococcus xanthus on casein J. Bacteriol. 129 770–777PubMedGoogle Scholar
  138. Rosenbluh, A., and M. Eisenbach. 1992 The effect of mechanical removal of pili on gliding motility in Myxococcus xanthus J. Bacteriol. 174 5406–5413PubMedGoogle Scholar
  139. Ruby, E. G., and M. J. McFall-Ngai. 1992 A squid that glows in the night: Development of an animal-bacterial mutualism J. Bacteriol. 174 4865–4870PubMedGoogle Scholar
  140. Russo-Marie, F., M. Roederer, B. Sager, L. A. Herzenberg, and D. Kaiser. 1993 β-galactosidase activity in single differentiating bacterial cells Proc. Natl. Acad. Sci. USA 90 8194–8198PubMedCrossRefGoogle Scholar
  141. Sager, B., and D. Kaiser. 1994 Intercellular C-signaling and the traveling waves of Myxococcus Genes Dev. 8 2793–2804PubMedCrossRefGoogle Scholar
  142. Schwedock, J. S., C. Liu, and T. S. Leyh. 1994 Rhizobium meliloti nodP and nodQ form a multifunctional sulfate-activating complex requiring GTP for activity J. Bacteriol. 176 7055–7064PubMedGoogle Scholar
  143. Shadel, G., J. H. Devine, and T. O. Baldwin. 1990 Control of the lux regulon of Vibrio fischeri J. Biolumin. Chemilumin. 5 99–106PubMedCrossRefGoogle Scholar
  144. Shimkets, L. J., and H. Rafiee. 1990 CsgA, an extracellular protein essential for Myxococcus xanthus development J. Bacteriol. 172 5299–5306PubMedGoogle Scholar
  145. Shimkets, L., and C. R. Woese. 1992 A phylogenetic analysis of the myxobacteria: Basis for their classification Proc. Natl. Acad. Sci. USA 89 9459–9463PubMedCrossRefGoogle Scholar
  146. Shinoda, S., and K. Okamoto. 1977 Formation and function of Vibrio parahaemolyticus lateral flagella J. Bacteriol. 129 1266–1271PubMedGoogle Scholar
  147. Singer, M., and D. Kaiser. 1995 Ectopic production of guanosine penta-and tetra-phosphate can initiate early developmental gene expression in Myxococcus xanthus Genes Dev. 9 1633–1644PubMedCrossRefGoogle Scholar
  148. Smith, M. W., D.-F. Feng, and R. F. Doolittle. 1992 Evolution by acquisition: the case for horizontal gene transfers Trends Biochem. Sci. 17 489–493PubMedCrossRefGoogle Scholar
  149. Søgaard-Anderson, L., and D. Kaiser. 1996 C-factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus Proc. Natl. Acad. Sci. USA 93 2675–2679CrossRefGoogle Scholar
  150. Søgaard-Anderson, L., F. Slack, H. Kimsey, and D. Kaiser. 1996 Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway Genes Dev. 10 740–754CrossRefGoogle Scholar
  151. Sonenshein, A. L. 1999 Endospore-forming bacteria: An overview In: Y. Brun, and L. Shimkets (Eds.) Prokaryotic Development ASM Press, Washington DC 1–475Google Scholar
  152. Spormann, A., and D. Kaiser. 1999 Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements J. Bacteriol. 181 2593–2601PubMedGoogle Scholar
  153. Stedman, K. M., C. Schleper, E. Rumpf, and W. Zillig. 1999 Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors Genetics 152 1397–1405PubMedGoogle Scholar
  154. Stevens, A. M., K. M. Dolan, and E. P. Greenberg. 1994 Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region Proc. Natl. Acad. Sci. USA 91 12619–12623PubMedCrossRefGoogle Scholar
  155. Stevens, A. M., and E. P. Greenberg. 1999 Transcriptional activation by LuxR In: G. M. Dunny, and S. C. Winans (Eds.) Cell-cell Signaling in Bacteria ASM Press Washington DC 231–242Google Scholar
  156. Stewart, B. J., J. L. Enos-Berlage, and L. L. McCarter. 1997 The lonS gene regulates swarmer cell differentiation of Vibrio parahaemolyticus J. Bacteriol. 179 107–114PubMedGoogle Scholar
  157. Stragier, P., and R. Losick. 1996 Molecular genetics of sporulation in Bacillus subtilis Ann. Rev. Genet. 30 297–341PubMedCrossRefGoogle Scholar
  158. Strom, M. S., and S. Lory. 1993 Structure-function and biogenesis of the type IV pili Ann. Rev. Microbiol. 47 565–596CrossRefGoogle Scholar
  159. Thaxter, R. 1892 On the Myxobacteriaceae, a new order of Schizomycetes Bot. Gaz. 17 389–406CrossRefGoogle Scholar
  160. Thony-Meyer, L., and D. Kaiser. 1993 devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus J. Bacteriol. 175 7450–7462PubMedGoogle Scholar
  161. Toal, D. R., S. W. Clifton, B. A. Roe, and J. Downard. 1995 The esg locus of Myxococcus xanthus encodes the E1a and E1b subunits of a branched-chain keto acid dehydrogenase Molec. Microbiol. 16 177–189CrossRefGoogle Scholar
  162. Velicer, G., L. Kroos, and R. E. Lenski. 1998 Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat Proc. Natl. Acad. Sci. USA 95 12376–12380PubMedCrossRefGoogle Scholar
  163. Wall, D., and D. Kaiser. 1998 Alignment enhances the cell-to-cell transfer of pilus phenotype Proc. Natl. Acad. Sci. USA 95 3054–3058PubMedCrossRefGoogle Scholar
  164. Wall, D., and D. Kaiser. 1999 Type IV pili and cell motility Molec. Microbiol. 32 1–10CrossRefGoogle Scholar
  165. Wall, D., P. E. Kolenbrander, and D. Kaiser. 1999 The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pili biogenesis, S motility and development J. Bacteriol. 181 24–33PubMedGoogle Scholar
  166. Wedel, A., and S. Kustu. 1995 The bacterial enhancer-binding protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation Genes Dev. 9 2042–2052PubMedCrossRefGoogle Scholar
  167. Weimer, R. M., C. Creighton, A. Stassinopoulos, P. Youderian, and P. L. Hartze. 1998 A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus J. Bacteriol. 180 5357–5368PubMedGoogle Scholar
  168. White, D. 1993 Myxospore and fruiting body morphogenesis In: M. Dworkin, and D. Kaiser (Eds.) Myxobacteria II ASM Press Washington DC 307–332Google Scholar
  169. Whitman, W. B., F. Pfeifer, P. Blum, and A. Klein. 1999 What Archaea have to tell biologists Genetics 152 1245–1248PubMedGoogle Scholar
  170. Whittaker, R. H. 1969 New concepts of kingdoms of organisms Science 163 150–160PubMedCrossRefGoogle Scholar
  171. Wilcox, M., G. J. Mitchison, and R. J. Smith. 1973 Pattern formation in the blue-green alga, Anabaena J. Cell. Sci. 12 707–723PubMedGoogle Scholar
  172. Winans, S. C., J. Zhu, and M. I. More. 1999 Cell density-dependent gene expression by Agrobacterium tumefaciens during colonization of crown gall tumors In: G. Dunny, and S. C. Winans (Eds.) Cell-cell Signaling in Bacteria ASM Press Washington DC 117–128Google Scholar
  173. Wolfe, A. J., and H. C. Berg. 1989 Migration of bacteria in semisolid agar Proc. Natl. Acad. Sci. USA 86 6973–6977PubMedCrossRefGoogle Scholar
  174. Wu, S. S., and D. Kaiser. 1995 Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus Molec. Microbiol. 18 547–558CrossRefGoogle Scholar
  175. Wu, S. S., and D. Kaiser. 1997 Regulation of expression of the pilA gene in Myxococcus xanthus J. Bacteriol. 179 7748–7758PubMedGoogle Scholar
  176. Wu, S. S., J. Wu, and D. Kaiser. 1997 The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced Molec. Microbiol. 23 109–121CrossRefGoogle Scholar
  177. Wu, S. S., J. Wu, Y. L. Cheng, and D. Kaiser. 1998 The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social motility in Myxococcus xanthus Molec. Microbiol. 29 1249–1261CrossRefGoogle Scholar
  178. Yoon, H. S., and J. W. Golden. 1998 Heterocyst pattern formation controlled by a diffusible peptide Science 282 935–938PubMedCrossRefGoogle Scholar
  179. Zhang, L., P. J. Murphy, A. Kerr, and M. E. Tate. 1993 Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones Nature 362 446–448PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dale KAISER

There are no affiliations available

Personalised recommendations