Organic Acid and Solvent Production

  • Palmer Rogers
  • Jiann-Shin Chen
  • Mary Jo Zidwick
Reference work entry

Literature Cited

  1. Abbad-Andaloussi, S., C. Manginot-Durr, J. Amine, E. Petitdemange, and H. Petitdemange. 1995 Isolation and Characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids Appl. Environ. Microbiol. 61 4413–4417PubMedGoogle Scholar
  2. Abbad-Andaloussi, S., C. Durr, G. Raval, and H. Petitdemange. 1996 Carbon and electron flow in Clostridum butyricum grown in chemostat culture on glycerol and glucose Microbiol. 142 1149–1158CrossRefGoogle Scholar
  3. Abbad-Andaloussi, S., E. Guedon, E. Spiesser, and H. Petitdemange. 1996 Glycerol dehydratase activity: The limiting step for 1,3-propanediol production by Clostridium butyricum DSM 5431 Letts. Appl. Microbiol. 22 311–314CrossRefGoogle Scholar
  4. Abrini, J., H. Naveau, and E.-J. Nyns. 1994 Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide Arch. Microbiol. 16 345–351CrossRefGoogle Scholar
  5. Adamse, A. D. 1980 New isolation of Clostridium aceticum, (Wieringa) Ant v. Leeuwenhoek 46 523–531CrossRefGoogle Scholar
  6. Adler, H. I., and W. Crow. 1987 A technique for predicting the solvent-producing ability of Clostridium acetobutylicum Appl. Environ. Microbiol. 53 2496–2499PubMedGoogle Scholar
  7. Afschar, A. S., K. H. Bellgardt, C. E. Vaz Rossell, A. Czok, and K. Schaller. 1991 The production of 2,3-butanediol by fermentation of high test molasses Appl. Microbiol. Biotechnol. 34 582–585CrossRefGoogle Scholar
  8. Afschar, A. S., C. E. Vas Rossell, R. Jonas, A. Quesada Chanto, and K. Schaller. 1993 Microbial production and downstream processing of 2,3-butanediol J. Biotechnol. 27 317–329CrossRefGoogle Scholar
  9. Agreda, V. H., and J. R. Zoeller. 1993 Acetic Acid and Its Derivatives Dekker New York NYGoogle Scholar
  10. Ahn, W. K., S. J. Park, and S. Y. Lee. 2000 Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Esherichia coli with a highly concentrated whey solution Appl. Environ. Microbiol. 66 3624–3627PubMedCrossRefGoogle Scholar
  11. Ahn, W. S., S. J. Park, and S. Y. Lee. 2001 Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Esherichia coli Biotechnol. Lett. 23 235–240CrossRefGoogle Scholar
  12. Ahrens, K., K. Menzel, A. P. Zeng, and W. D. Deckwer. 1998 Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. III: Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation Biotechnol. Bioengin. 59 544–552CrossRefGoogle Scholar
  13. Alam, S., D. Stevens, and R. Bajpai. 1988 Production of butyric acid by batch fermentation of cheese whey with Clostridum beijerinckii J. Indust. Microbiol. 2 359–364CrossRefGoogle Scholar
  14. Alam, S., F. Capit, W. A. Weigand, and J. Hong. 1990 Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens: Effect of initial substrate concentration and aeration J. Chem. Tech. Biotechnol. 47 71–84Google Scholar
  15. Albertsson, A.-C., and R. H. Marchessault. 1994 Governmental policy, regulations and standards In: Y. Doi and K. Fukuda (Eds.) Biodegradable Plastics and Polymers Elsevier Science Amsterdam The Netherlands 313–318Google Scholar
  16. Aldrich, H. C., L. McDowell, M. de. F. S. Barbosa, L. P. Yomano, R. K. Scopes, and L. O. Ingram. 1992 Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis J. Bacteriol. 174 4504–4508PubMedGoogle Scholar
  17. Allcock, E. R., and D. R. Woods. 1981a Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium Appl. Environ. Microbiol. 41 539–541PubMedGoogle Scholar
  18. Allcock, E. R., S. J. Reid, D. T. Jones, and D. R. Woods. 1981b Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum Appl. Environ. Microbiol. 42 929–935PubMedGoogle Scholar
  19. Allgeier, R. J., and F. M. Hildebrandt. 1960 Developments in vinegar manufacture Adv. Appl. Microbiol. 8 163–182CrossRefGoogle Scholar
  20. Alpers, J. 1999 Engineering metabolism for commercial gains Science 283 1625–1626CrossRefGoogle Scholar
  21. Altaras, N. E., and D. C. Cameron. 1999 Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli Appl. Environ. Microbiol. 65 1180–1185PubMedGoogle Scholar
  22. Altaras, N. E., and D. C. Cameron. 2000 Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli Biotechnol. Prog. 16 940–946PubMedCrossRefGoogle Scholar
  23. Altaras, N. E., M. R. Etzel, and D. C. Cameron. 2001 Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8 Biotechnol. Prog. 17 52–56PubMedCrossRefGoogle Scholar
  24. Althouse, J. W., and L. L. Tavlarides. 1992 Analysis of organic extractant systems for acetic acid removal for calcium magnesium acetate production Ind. Eng. Chem. Res. 31 1971–1981CrossRefGoogle Scholar
  25. Aminabhavi, T. M., and R. H. Balundgi. 1990 A review of biodegradable plastics Polym. Plast. Technol. Eng. 29 235–262CrossRefGoogle Scholar
  26. Amrane, A., and Y. Prigent. 1996 A novel concept of bioreactor: Specialized function two-stage continuous reactor, and its application to lactose conversion into lactic acid J. Biotechnol. 45 195–203CrossRefGoogle Scholar
  27. Anastassiadis, S., A. Aivasidis, and C. Wandrey. 1999 Process for the production of gluconic acid with a strain of Aureobasidium pullulans (deBray) Arnaud US Patent 5692286Google Scholar
  28. Van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985 Glucose fermentation by Clostridium butyricum grown under a self-generated gas atmosphere in chemostat culture Appl. Microbiol. Biotechnol. 23 21–26CrossRefGoogle Scholar
  29. Anderson, A. J., and E. A. Dawes. 1990 Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates Microbiol. Rev. 54 450–472PubMedGoogle Scholar
  30. Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970 Clostridium formicoaceticum nov. spec. isolation description, and distinction from C. aceticum and C. thermoaceticum Arch. Mikrobiol. 72 154–174PubMedCrossRefGoogle Scholar
  31. Andrianova, Y. E., T. L. Bakuridze, V. G. Yargunov, I. V. Zhurov, and V. G. Vinter. 1998 Effects of succinate on the growth rates of potato, Rauwolfia, and ginseng in vitro Prikl. Biokhim. Mikrobiol. 34 435–438Google Scholar
  32. Annous, B., and H. P. Blaschek. 1991 Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity Appl. Environ. Microbiol. 57 2544–2548PubMedGoogle Scholar
  33. Anonymous. 1956 Trends of world solvents production for the past ten years and the management of the Chiai (Taiwan) Solvents Works [in Chinese] Petroleum Communications China Petroleum Corporation Taiwan China June, Issue 60 42–57Google Scholar
  34. Anonymous. 1958 New direction of development for the Chiai (Taiwan) Solvents Works [in Chinese] Petroleum Communications China Petroleum Corporation Taiwan China May, Issue 83 6–7Google Scholar
  35. Anonymous. 1996a Chemical profile: Propylene glycol Chem. Mark. Rep. 249 37Google Scholar
  36. Anonymous. 1996b Facts and figures for the chemical industry: Production by the US chemical industry Chem. Eng. News June 24 41Google Scholar
  37. Anonymous. 1997 Facts and figures for the chemical industry—production: mixed in 1996 Chem. Eng. News June 23 41Google Scholar
  38. Anonymous. 1999 Shell Chemicals Research Team wins ACS 2000 award for innovation Chem. Mark. Rep. 256Google Scholar
  39. Anonymous. 2001a Chemical prices Chem. Mark. Rep. 259 8–21Google Scholar
  40. Anonymous. 2001b Chemical profile: Isopropanol Chem. Mark. Rep. November 12 31Google Scholar
  41. Anonymous. 1979 Facts and figures for the U.S. chemical industry—production of organic chemicals Chem. Eng. News June 11 37Google Scholar
  42. Anonymous. 1993 Chemical Marketing Reporter March 1 7Google Scholar
  43. Anonymous. 1999 All-microbial route yields chiral building blocks Chem. Eng. News 77(8) 57Google Scholar
  44. Anonymous. 2000 Chemical prices Chemical Market Reporter 257(23) 26–33Google Scholar
  45. Anonymous. 2001a Chemical prices Chem. Market. Rep. 160(17) 23–26Google Scholar
  46. Anonymous. 2001b Glycerol, propionic acid, butyric acid Chem. Market. Rep. 259(13) 30–33Google Scholar
  47. Arihara, K., and J. B. Luchansky. 1995 Dairy lactobacilli In: Y. H. Hui and G. G. Khachatouriani (Eds.) Food Biotechnology: Microorganisms VCH New York NY 609–643Google Scholar
  48. Arzberger, C. F., W. H. Peterson, and E. B. Fred. 1920 Certain factors that influence acetone production by Bacillus acetoethylicum J. Biol. Chem. 44 465–479Google Scholar
  49. Asai, T. 1968 Acetic Acid Bacteria: Classification and Biochemical Activities University Press of Tokyo and University Park Press Tokyo Japan Baltimore MDGoogle Scholar
  50. Attwood, M. A., J. P. van Dijken, and J. T. Pronk. 1991 Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus J. Ferm. Bioeng. 72 101–105CrossRefGoogle Scholar
  51. Auvray, F., M. Codderville, P. Ritzenthaler, and L. Dupont. 1997 Plasmid integration in a wide range of bacteria mediated by intgrase of Lactobacillus delbrueckii bacteriophage mv4 J. Bacteriol. 179 1837–1845PubMedGoogle Scholar
  52. Azeddoug, H., J. Hubert, and G. Reysset. 1992 Stable inheritance of shuttle vectors based on plasmid pIM13 in a mutant strain of Clostridium acetobutylicum J. Gen. Microbiol. 138 1371–1378PubMedCrossRefGoogle Scholar
  53. Babb, B. L., H. J. Collett, S. J. Reid, and D. R. Woods. 1993 Transposon mutagenesis of Clostridium acetobutylicum P262: Isolation and characterization of solvent deficient and metronidazole resistant mutants FEMS Microbiol. Lett. 114 343–348PubMedCrossRefGoogle Scholar
  54. Babel, W., U. Iske, M. Jechorek, and D. Miethe. 1987 Method for production of products by fermentation of methanol. German Patent GDR 251,571 Chem. Abstr. 109 36639Google Scholar
  55. Babel, W., R. Mueller, D. Miethe, and U. Iske. 1988 Continuous microbial synthesis of products of incomplete oxidation, such as gluconic acid. German Patent DD 253,836 Chem. Abstr. 109 108918Google Scholar
  56. Babel, W., D. Miethe, U. Iske, K. Sattler, H. P. Richter, J. Schmidt, and Babel, W., N. Lofhagen, D. Miethe, R. Mueller, U. Iske, M. Jechorek, and R. Dueresch. 1991 Microbial manufacture of gluconic acid. German Patent DD 293, 135 Chem. Abstr. 115 278185Google Scholar
  57. Bahl, H., W. A. Andersch, K. Braun, and G. Gottschalk. 1982a Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture Eur. J. Appl. Microbiol. Biotechnol. 14 17–20CrossRefGoogle Scholar
  58. Bahl, H., W. Andersch, and G. Gottschalk. 1982b Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat Appl. Microbiol. Biotechnol. 15 201–205CrossRefGoogle Scholar
  59. Bahl, H., H. Müller, S. Behrens, H. Joseph, and F. Naberhaus. 1995 Expression of heat shock genes in Clostridium acetobutylicum FEMS Microbiol. Rev. 17 341–348PubMedCrossRefGoogle Scholar
  60. Bahner, B. 1994 Chemical Marketing Reporter March 21st 14Google Scholar
  61. Baker, R. C., and R. E. Kramer. 1999 Cytotoxicity of short-chain alcohols Ann. Rev. Pharmocol. Toxicol. 39 127–150CrossRefGoogle Scholar
  62. Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977 Acetobacterium, a new genus of hydrogen-oxidizing carbon dioxide-reducing, anaerobic bacteria Int. J. Syst. Bacteriol. 27 355–361CrossRefGoogle Scholar
  63. Baldus, J. M., B. D. Green, P. Youngman, and C. P. Morgan Jr. 1994 Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes J. Bacteriol. 176 296–306PubMedGoogle Scholar
  64. Ballerini, D., J. P. Desmarquest, J. Pourquie, F. Nativel, and M. Rebeller. 1994 Ethanol production from lignocellulosics: Large scale experimentation and economics Bioresource Technol. 50 17–23CrossRefGoogle Scholar
  65. Ballongue, J., J. Amine, E. Masion, H. Petitdemange, and R. Gay. 1985 Induction of acetoacetate decarboxylase in Clostridium acetobutylicum FEMS Microbiol. Lett. 29 273–277CrossRefGoogle Scholar
  66. Barber, J. M., F. T. Robb, J. R. Webster, and D. R. Woods. 1979 Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process Appl. Environ. Microbiol. 37 433–437PubMedGoogle Scholar
  67. Barbirato, F., C. Camarasa-Claret, J. P. Grivet, and A. Bories. 1995 Glycerol fermentation by a new 1,3-propanediol-producing microorganism: Enterobacter agglomerans Appl. Microbiol. Biotechnol. 43 786–793CrossRefGoogle Scholar
  68. Barbirato, F., J. P. Grivet, P. Soucaille, and A. Bories. 1996a 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species Appl. Environ. Microbiol. 62 1448–1451PubMedGoogle Scholar
  69. Barbirato, F., P. Soucaille, and A. Bories. 1996b Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during fermentation of glycerol by Enterobacter agglomerans Appl. Environ. Microbiol. 62 4405–4409PubMedGoogle Scholar
  70. Barbirato, F., D. Chedaille, and A. Bories. 1997 Propionic acid fermentation from glycerol: Comparison with conventional substrates Appl. Microbiol. Biotechnol. 47 441–446CrossRefGoogle Scholar
  71. Barbirato, F., S. Astruc, P. Soucaille, C. Camarasa, J. M. Salmon, and A. Bories. 1997a Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: Limitations and regulations Microbiology 143 2423–2432PubMedCrossRefGoogle Scholar
  72. Barbirato, F., A. Larguier, T. Conte, S. Astruc, and A. Bories. 1997b Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210 Arch. Microbiol. 168 160–163PubMedCrossRefGoogle Scholar
  73. Barbirato, F., E. H. Himmi, T. Conte, and A. Bories. 1998 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries Indust. Crops Prod. 7 281–289CrossRefGoogle Scholar
  74. Barik, S., S. Prieto, S. B. Harrison, E. C. Clausen, and J. L. Gaddy. 1988 Biological production of alcohols from coal through indirect liquefaction: Scientific note Appl. Biochem. Biotechnol. 18 363–378CrossRefGoogle Scholar
  75. Barker, H. A. 1972 Co-enzyme B12-dependent mutases causing carbon chain rearrangements In: P. D. Boyer (Ed.) The Enzymes Academic Press New York NY 6 509–537Google Scholar
  76. Barnard, G. N., and J. K. M. Sanders. 1989 The poly-β-hydroxybutyrate granule in vivo: A new insight based on NMR spectroscopy of whole cells J. Biol. Chem. 264 3286–3291PubMedGoogle Scholar
  77. Basu, R., J. S. Bershears, and E. C. Clausen. 1999 Calcium Magnesium Acetate at Lower Production Costs: Production of CMA Deicer from Biomass US DOT Publication No. FHWA-RD-98-055.Google Scholar
  78. Bata, R. M., A. C. Elrod, and T. P. Lewandowski. 1991 Butanol as a blending agent with gasoline for I. C. engines In: R. W. Hurn, W. F. Marshall, and J. R. Allsup (Eds.) Oxygenates in Motor Fuel Formulation Society of Automotive Engineers Warrendale PA 35–40Google Scholar
  79. Bates, E. E. M., H. J. Gilbert, G. P. Hazelwood, J. Huckle, J. I. Laurie, and S. P. Mann. 1989 Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum Appl. Environ. Microbiol. 55 2095–2097PubMedGoogle Scholar
  80. Beall, D. S., and L. O. Ingram. 1993 Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose J. Ind. Microbiol. 11 151–155CrossRefGoogle Scholar
  81. Beesch, S. C. 1952 Acetone-butanol fermentation of sugars Ind. Engin. Chem. 44 1677–1682CrossRefGoogle Scholar
  82. Beesch, S. C. 1953 Acetone-butanol fermentation of starches Appl. Microbiol. 1 85–95PubMedGoogle Scholar
  83. Benda, I. 1982 Wine and brandy In: G. Reed (Ed.) Prescott & Dunn's Industrial Microbiology, 4th ed AVI Publishing Westport CT 293–402Google Scholar
  84. Bennett, G. N., and F. B. Rudolph. 1995 The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum FEMS Microbiol. Rev. 17 241–249CrossRefGoogle Scholar
  85. Bennett, G. N., and K. Y. San. 2001 Microbial formation, biotechnological production and application of 1,2-propanediol Appl. Microbiol. Biotechnol. 55 1–9PubMedCrossRefGoogle Scholar
  86. Benninga, H. 1990 A History of Lactic Acid Making Kluwer Academic Publishers Dordrecht Germany Boston MAGoogle Scholar
  87. Beppu, T. 1993 Genetic organization of Acetobacter for acetic acid fermentation Ant. v. Leeuwenhoek 64 121–135CrossRefGoogle Scholar
  88. Berglund, K. A., P. Elankovan, and D. A. Glassner. 1991 Carboxylic acid purification and crystallization process US Patent 5,034,105Google Scholar
  89. Berglund, K. A., S. Yedur, and D. D. Dunuwila. 1999 Succinic acid production and purification US Patent 5,958,744Google Scholar
  90. Bermejo, L. L., N. E. Welker, and E. T. Papoutsakis. 1998 Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification Appl. Environ. Microbiol. 64 1079–1085PubMedGoogle Scholar
  91. Bernhauer, K. 1924 Zum Problem der Säurebildung durch A. niger Biochem. Z. 153 517–521Google Scholar
  92. Bernhauer, K. 1928 Über die Characterisierung der Stämme von A. niger auf Grund ihres biochemischen Verhaltens Biochem.Z 197 278–287Google Scholar
  93. Beronio Jr., P. B., and G. T. Tsao. 1993 Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control Biotechnol. Bioengin. 42 1263–1269CrossRefGoogle Scholar
  94. Bertram, J., and P. Dü. 1989 Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum Arch. Microbiol. 151 551–557CrossRefGoogle Scholar
  95. Bertram, J., A. Kuhn, and P. Dü. 1990 Tn916-induced mutants of Clostridium acetobutylicum defective in regulation of solvent formation Arch. Microbiol. 153 373–377CrossRefGoogle Scholar
  96. Bhowmik, T., and J. L. Steele. 1994 Cloning, characterization, and insertional inactivation of Lactobacillus helveticus D(−)-lactate dehydrogenase Appl. Microbiol. Biotechnol. 41 432–439PubMedGoogle Scholar
  97. Biebl, H. 1991 Glycerol fermentation of 1,3-propanediol by Clostridium butyricum: Measurement of product inhibition by use of a pH-auxostat Appl. Microbiol. Biotechnol. 35 701–705CrossRefGoogle Scholar
  98. Biebl, H., S. Marten, H. Hippe, and W. D. Deckwer. 1992 Glycerol conversion to 1,3-propanediol by newly isolated clostridia Appl. Microbiol. Biotechnol. 36 592–597CrossRefGoogle Scholar
  99. Biebl, H., and S. Marten. 1995 Fermentation of glycerol to 1,3-propanediol: Use of cosubstrates Appl. Microbiol. Biotechnol. 44 15–19CrossRefGoogle Scholar
  100. Biebl, H., A. P. Zeng, K. Menzel, and W. D. Deckwer. 1998 Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae Appl. Microbiol. Biotechnol. 50 24–29PubMedCrossRefGoogle Scholar
  101. Biebl, H., K. Menzel, A. P. Zeng, and W. D. Deckwer. 1999 Microbial production of 1,3-propanediol Appl. Microbiol. Biotechnol. 52 289–297PubMedCrossRefGoogle Scholar
  102. Bigelis, R., and S. P. Tsai. 1995 Microorganisms for organic acid production In: Y. H. Hui and G. G. Khachatourians (Eds.) Food Biotechnology: Microorganisms VCH New York NY 239–280Google Scholar
  103. Billig, E., and D. R. Bryant. 1991 Oxoprocess Encyclopedia of Chemical Technology, 4th ed John Wiley & Sons New York NY 17 903–919Google Scholar
  104. Billig, E. 1992 Butyl alcohols In: J. I. Kroschwitz and M. Howe-Grant (Eds.) Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed John Wiley New York NY 4 691–700Google Scholar
  105. Birrer, G. A., W. R. Chesbro, and R. M. Zsigray. 1994 Electro-transformation of Clostridium beijerinckii NRRL B-592 with shuttle plasmid pHR106 and recombinant derivatives Appl. Microbiol. Biotechnol. 41 32–38PubMedCrossRefGoogle Scholar
  106. Blaschek, H., B. Annous, J. Formanek, and C.-K. Chen. 2002 Method of producing butanol using a mutant strain of Clostridium beijerinckii US Patent 6358717Google Scholar
  107. Blom, R. H., V. F. Pfeiffer, A. J. Moyer, D. H. Traufler, H. F. Conway, C. K. Crocker, R. E. Farison, and D. V. Hannibal. 1952 Sodium gluconate production-fermentation with A. niger Ind. Eng. Chem. 44 435–440CrossRefGoogle Scholar
  108. Blomqvist, K., M. Nikkola, P. Lehtovaara, M.-L. Suihko, U. Airaksinen, K. B. Straby, J. K. C. Knowles, and M. E. Penttila. 1993 Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes J. Bacteriol. 175 1392–1404PubMedGoogle Scholar
  109. Bock, A., and G. Sawers. 1996 “Fermentation” in Escherichia coli and Salmonella In: F. C. Neidhardt (Eds.) Cellular and Molecular Biology ASM Press 262–282Google Scholar
  110. Boenigk, R., S. Bowien, and G. Gottschalk. 1993 Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii Appl. Microbiol. Biotechnol. 38 453–457CrossRefGoogle Scholar
  111. Bolt, J. A. 1980 A Survey of alcohol as a motor fuel Alcohols as Motor Fuels Society of Automotive Engineers Warrendale PA 21–33Google Scholar
  112. Boutroux, L. 1880 Sur une fermentation nouvelle du glucose CR Acad. Sci. 91 236–238Google Scholar
  113. Bouvet, O. M. M., P. Lenormand, J. P. Carlier, and P. A. D. Grimont. 1994 Phenotypic diversity of anaerobic glyerol dissimilation shown by seven enterobacterial species Res. Microbiol. 145 129–139PubMedCrossRefGoogle Scholar
  114. Bowles, L. K., and W. L. Ellefson. 1985 Effects of butanol on Clostridium acetobutylicum Appl. Environ. Microbiol. 50 1165–1170PubMedGoogle Scholar
  115. Bowring, S. N., and J. G. Morris. 1985 Mutagenesis of Clostridium acetobutylicum J. Appl. Bacteriol. 58 577–584PubMedCrossRefGoogle Scholar
  116. Boyaval, P., J. Seta, and C. Gavach. 1993 Concentrated propionic acid production by electrodialysis Enzyme Microb. Technol. 15 683–686CrossRefGoogle Scholar
  117. Boyaval, P., C. Corre, and M. N. Madec. 1994 Propionic acid production in a membrane bioreactor Enzyme Microb. Technol. 16 883–886CrossRefGoogle Scholar
  118. Boyaval, P., and C. Corre. 1995 Production of propionic acid Lait 75 453–461CrossRefGoogle Scholar
  119. Boynton, Z. L., G. N. Bennett, and F. B. Rudolph. 1996a Cloning, sequencing and expression of clustered genes encoding β-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824 J. Bacteriol. 178 3015–3024PubMedGoogle Scholar
  120. Boynton, Z. L., G. N. Bennett, and F. B. Rudolph. 1996b Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824 Appl. Environ. Microbiol. 62 2758–2766PubMedGoogle Scholar
  121. Boynton, Z. L., J. J. Koon, E. M. Brennan, J. D. Clouart, D. M. Horowitz, T. U. Gerngross, and G. W. Huisman. 1999 Reduction of cell lysate viscosity during processing of poly(3-hydroxyalkanoates) by chromosomal integration of the Staphylococcal nuclease gene in Pseudomonas putida Appl. Environ. Microbiol. 65 1524–1529PubMedGoogle Scholar
  122. Brandt, D. A. 1982 Distilled beverage alcohol In: G. Reed (Ed.) Prescott & Dunn's Industrial Microbiology, 4th ed AVI Publishing Westport CT 468–491Google Scholar
  123. Brau, B., and H. Sahm. 1986 Cloning and expression of the sturctural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli Arch. Microbiol. 144 296–301CrossRefGoogle Scholar
  124. Braun, M., F. Mayer, and G. Gottschalk. 1981 Clostridium aceticum (Wieringa) a microorganism producing acetic acid from molecular hydrogen and carbon dioxide Arch. Microbiol. 128 288–293PubMedCrossRefGoogle Scholar
  125. Bringer-Meyer, S., K.-L. Schmiz, and H. Sahm. 1986 Pyruvate decarboxylase from Zymomonas mobilis: Isolation and partial characterization Arch. Microbiol. 146 105–110CrossRefGoogle Scholar
  126. Brown, A. T., and L. C. Breeding. 1980 Carbon dioxide metabolism by Actinomyces viscosus: Pathways for succinate and aspartate production Infect. Immun. 28 82–91PubMedGoogle Scholar
  127. Brown, D. P., L. Ganova-Raevn, B. D. Green, S. R. Wilkinson, M. Young, and P. Youngman. 1994 Characterization of spoOA homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain Molec. Microbiol. 14 411–426CrossRefGoogle Scholar
  128. Bryant, F. O., J. Wiegel, and L. G. Ljungdahl. 1988 Purification and properties of primary and secondary alcohol dehydrogenases from Thermoanaerobacter ethanolicus Appl. Environ. Microbiol. 54 460–465PubMedGoogle Scholar
  129. Bryant, R. S. 1990 Microbial enhanced oil recovery and compositions therefor US Patent 4905761Google Scholar
  130. Bryn, K., and F. C. Stormer. 1976 Decreased riboflavin formation in mutants of Aerobacter (Enterobacter) aerogenes deficient in the butanediol pathway Biochim. Biophys. Acta 428 257–259PubMedCrossRefGoogle Scholar
  131. Buchholz, S. E., M. M. Dooley, and D. E. Eveleigh. 1987 Zymomonas—an alcoholic enigma Trends Biotechnol. 5 199–204CrossRefGoogle Scholar
  132. Bucholz, K., and B. Gödelmann. 1978 Macrokinetics and operational stability of immobilized glucose oxidase and catalase Biotechnol. Bioeng. 20 1201–1220CrossRefGoogle Scholar
  133. Buchta, K. 1983 Lactic acid In: H.-J. Rehm and G. Reed (Eds.) Biotechnology Verlag Chemie Weinheim Germany 409–417Google Scholar
  134. Bulthuis, B. A., A. A. Gatenby, S. L. Laynie, A. K. Hsu, and R. D. Lareau. 1998 Method for the production of glycerol by recombinant organisms Patent Cooperation Treaty (PCT) Application WO 98/21340Google Scholar
  135. Burdette, D., and J. G. Zeikus. 1994 Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2°dh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioesterase Biochem. J. 302 163–170PubMedGoogle Scholar
  136. Burdette, D. S., C. Vieille, and J. G. Zeikus. 1996 Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical charaterization of the enzyme Biochem. J. 316 115–122PubMedGoogle Scholar
  137. Busche, R. M. 1985 Acetic acid manufacture—fermentation alternatives In: P. N. Cherenisinoff and R. P. Ouellette (Eds.) Biotechnology Applications and Research Technomic Lancaster PA 88–102Google Scholar
  138. Busche, R. M. 1991 Extractive fermentation of acetic acid: Economic tradeoff between yield of Clostridium and concentration of Acetobacter Appl. Biochem. Biotechnol. 28/29 605–621CrossRefGoogle Scholar
  139. Buschhorn, H., P. Dü, and G. Gottschalk. 1989 Production and utilization of ethanol by homoacetogen Acetobacterium woodii Appl. Environ. Microbiol. 55 1835–1840PubMedGoogle Scholar
  140. Byrom, D. 1992 Production of poly-β-hydroxybutyrate: Poly-β-hydroxyvalerate copolymers FEMS Microbiol. Rev. 103 247–250Google Scholar
  141. Byrom, D. 1994 Polyhydroxyalkanoates In: D. P. Mobley (Ed.) Plastics from Microbes Hanser Publishers Munich Germany 5–33Google Scholar
  142. Cameron, D. C., and C. L. Cooney. 1986 A novel fermentation: The production of R(−)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum Biotechnology 4 651–654CrossRefGoogle Scholar
  143. Cameron, D. C., I. T. Tong, and F. A. Skraly. 1993 Metabolic engineering for the production of 1,3-propanediol In: Chianelli, R. R. and Davison, B. H. ACS Symposium on Bioremediation and Bioprocessing American Chemical Society Denver CO 38 294–295Google Scholar
  144. Cameron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw. 1998 Metabolic engineering of propanediol pathways Biotechnol. Prog. 14 16–125CrossRefGoogle Scholar
  145. Cameron, D. C., A. J. Shaw, and N. E. Altaras. 2000 Microbial production of 1,2-propanediol from sugar US Patent 6087140Google Scholar
  146. Cann, I. K. O., P. G. Stroot, K. R. Mackie, B. A. White, and R. I. Mackie. 2001 Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium Int. J. Syst. Evol. Microbiol. 51 293–302PubMedGoogle Scholar
  147. Carr, N. G. 1966 The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chloroglea fritschii Biochim. Biophys. Acta 120 308–310PubMedCrossRefGoogle Scholar
  148. Cato, E. P., W. L. George, and S. M. Finegold. 1986 Genus Clostridium Prazmowski 1880 In: H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey's Manual of Systematic Bacteriology Williams and Wilkins Baltimore MD 2 1141–1200Google Scholar
  149. Cauvin, B., and J. B. Luchansky. 1992 Advances in electro-transformation of Gram-positive bacteria Bio-rad Laboratories Bulletin 1350AGoogle Scholar
  150. Cayol, J.-L., B. Ollivier, B. K. C. Patel, G. Ravot, M. Magot, E. Ageron, P. A. D. Grimont, and J.-L. Garcia. 1995 Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface french oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii Int. J. Syst. Bacteriol. 45 783–789PubMedCrossRefGoogle Scholar
  151. Champluvier, B., J. Decallonne, and P. G. Rouxhet. 1989 Influence of sugar source (lactose, glucose, galactose) on 2,3-butanediol production by Klebsiella oxytoca NRRL-B199 Arch. Microbiol. 152 411–414PubMedCrossRefGoogle Scholar
  152. Chang, H. N., Y. C. Kim, S. Y. Lee, and B. S. Kim. 1994 Current status of biodegradable plastics in Korea: Research, commercial production and government policy In: Y. Doi and K. Fukuda (Eds.) Biodegradable Plastics and Polymers Elsevier Science Amsterdam The Netherlands 286–297Google Scholar
  153. Chang, D.-E., H.-C. Jung, J.-S. Rhee, and J.-G. Pan. 1999 Homofermentative production of D-or L-lactate in metabolically engineered Escherichia coli RR1 Appl. Environ. Microbiol. 65 1384–1389PubMedGoogle Scholar
  154. Chen, J.-S., and S. F. Hiu. 1986 Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum) Biotechnol. Lett. 8 371–376CrossRefGoogle Scholar
  155. Chen, J.-S. 1987 Electron transport in anaerobes In: T. J. Montville (Ed.) Concepts in Physiology and Metabolism CRC Press Boca Raton FL 1 61–101Google Scholar
  156. Chen, J.-S. 1993 Properties of acid-and solvent-froming enzymes of clostridia In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann Stoneham MA 51–76Google Scholar
  157. Chen, J. S. 1995 Alcohol dehydrogenase: Multiplicity and relatedness in the solvent-producing clostridia FEMS Microbiol. Rev. 17 263–273PubMedCrossRefGoogle Scholar
  158. Chen, C.-K., and H. P. Blaschek. 1999a Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101 Appl. Microbiol. Biotechnol. 52 170–173PubMedCrossRefGoogle Scholar
  159. Chen, C.-K., and H. Blaschek. 1999b Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration Appl. Environ. Microbiol. 65 499–505PubMedGoogle Scholar
  160. Cheng, P., R. E. Mueller, S. Jaeger, R. Bajpai, and E. L. Iannotti. 1991 Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus J. Indust. Microbiol. 7 27–34CrossRefGoogle Scholar
  161. Cheryan, M., S. Paretkh, M. Shah, and K. Witjitra. 1997 Production of acetic acid by Clostridium thermoaceticum Adv. Appl. Microbiol. 43 1–33PubMedCrossRefGoogle Scholar
  162. Cheryan, M. 1999 Acetic acid production In: J. Lederberg (Ed.) Encyclopedia of Microbiology Academic Press San Diego CAGoogle Scholar
  163. Chiellini, E. 1994 Status of government policy, regulation and standards on the issue of biodegradable plastic materials in Italy In: Y. Doi and K. Fukuda (Eds.) Biodegradable Plastics and Polymers Elsevier Science Amsterdam The Netherlands 273–285Google Scholar
  164. Choi, J., and S. Y. Lee. 1997 Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation Bioprocess Eng. 17 335–342CrossRefGoogle Scholar
  165. Choi, J., and S. Y. Lee. 1999a Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals Biotechnol. Bioeng. 62 546–553PubMedCrossRefGoogle Scholar
  166. Choi, J., and S. Y. Lee. 1999b High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Esherichia coli Appl. Environ. Microbiol. 65 4363–4368PubMedGoogle Scholar
  167. Choi, J., and S. Y. Lee. 2000 Economic consideration in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation Appl. Microbiol. Biotechnol. 53 646–649PubMedCrossRefGoogle Scholar
  168. Chotani, G., T. Dodge, A. Hsu, M. Kumar, R. LaDuca, D. Trimbur, W. Weyler, and K. Sanford. 2000 The commercial production of chemicals using pathway engineering Biochim. Biophys. Acta 1543 434–455PubMedCrossRefGoogle Scholar
  169. Chukwu, U. N., and M. Cheryan. 1996 Concentration of vinegar by electrodialysis J. Food Sci. 61 1223–1226CrossRefGoogle Scholar
  170. Chun, V. H., and P. L. Rogers. 1988 The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis Appl. Microbiol. Biotechnol. 29 19–24CrossRefGoogle Scholar
  171. Clark, D. P., P. R. Cunningham, S. G. Reams, F. Mat-Jan, R. Mohammedkhani, and C. R. Williams. 1988 Mutants of Escherchia coli defective in acid fermentation Appl. Biochem. Biotechnol. 17 163–173PubMedCrossRefGoogle Scholar
  172. Clark, D. P. 1989 The fermentation pathways of Escherichia coli FEMS Microbiol. Rev. 63 223–234CrossRefGoogle Scholar
  173. Clark, S. W., G. N. Bennett, and F. B. Rudolph. 1989 Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A: Acetate/butyrate:coenzyme A-transferase (EC 2.8.3.9) and in other solvent pathway enzymes Appl. Environ. Microbiol. 55 970–976PubMedGoogle Scholar
  174. Clausen, E. C., and J. L. Gaddy. 1996 Ethanol from biomass by gasification/fermentation In: M. R. Khan (Ed.) Conversion and Utilization of Waste Materials Taylor & Francis Washington DC 157–167Google Scholar
  175. Cocconcelli, P. S., M. J. Gasson, L. Morelli, and V. Bottazzi. 1991 Single-stranded DNA plasmid vector construction and cloning of Bacillus stearothermophilus α-amylase in Lactobacillus Res. Microbial. 142 643–652CrossRefGoogle Scholar
  176. Cocks, G. T., J. Aguilar, and E. C. C. Lin. 1974 Evolution of L-1,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism J. Bacteriol. 118 83–88PubMedGoogle Scholar
  177. Colby, G. D., and J.-S. Chen. 1992 Purification and properties of 3-hydroxybutyryl-coenzyme A dehydrogenase from Clostridium beijerinckii (“Clostridium butylicum”) NRRL B593 Appl. Environ. Microbiol. 58 3297–3302PubMedGoogle Scholar
  178. Colby, G. D. 1993 CoA-transferase and 3-hydroxybutyryl-CoA Dehydrogenases: Acetoacetyl-CoA-reacting Enzymes from Clostridium beijerinckii NRRL B593 [PhD thesis] Virginia Polytechnic Institute and State University Blacksburg VAGoogle Scholar
  179. Colin, T., A. Bories, and G. Moulin. 2000 Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation Appl. Microbiol. Biotechnol. 54 201–205PubMedCrossRefGoogle Scholar
  180. Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow. 1994 The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 44 812–826PubMedCrossRefGoogle Scholar
  181. Colomban, A., L. Roger, and P. Boyaval. 1993 Production of propionic acid from whey permeate by sequential fermentation, ultrafiltration, and cell recycling Biotechnol. Bioeng. 42 1091–1098PubMedCrossRefGoogle Scholar
  182. Compere, A. L., and W. L. Griffith. 1979 Evaluation of substrates for butanol production Devel. Ind. Microbiol. 20 509–517Google Scholar
  183. Compere, A. L., W. L. Griffith, and J. M. Googin. 1985 Solvents production by clostridia as a function of wood stream organic toxicant concentration Devel. Ind. Microbiol. 26 535–541Google Scholar
  184. Conway, T., Y. A. Osman, J. I. Konnan, E. M. Hoffmann, and L. O. Ingram. 1987 Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase J. Bacteriol. 169 949–954PubMedGoogle Scholar
  185. Conway, T., and L. O. Ingram. 1989 Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae J. Bacteriol. 171 3754–3759PubMedGoogle Scholar
  186. Cook, G. M., F. A. Rainey, B. K. C. Patel, and H. W. Morgan. 1996 Characterization of a new obligately anaerobic thermophile, Thermanaerobacter wiegelii sp. nov Int. J. Syst. Bacteriol. 46 123–127PubMedCrossRefGoogle Scholar
  187. Cornillot, E., and P. Soucaille. 1996 Solvent-forming genes in clostridia Nature 380 489CrossRefGoogle Scholar
  188. Cornillot, E., C. Croux, and P. Soucaille. 1997a Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome J. Bacteriol. 179 7426–7434PubMedGoogle Scholar
  189. Cornillot, E., R. V. Nair, E. T. Papoutsakis, and P. Soucaille. 1997b The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain J. Bacteriol. 179 5442–5447PubMedGoogle Scholar
  190. Croux, C., and J. L. Garcia. 1991 Sequence of the lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC 824: Comparison with other lytic enzymes Gene 104 25–31PubMedCrossRefGoogle Scholar
  191. Croux, C., and J. L. Garcia. 1992a Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli FEMS Microbiol. Lett. 95 13–20CrossRefGoogle Scholar
  192. Croux, C., B. Canard, G. Goma, and P. Soucaille. 1992b Autolysis of Clostridium acetobutylicum ATCC 824 J. Gen. Microbiol. 138 861–869PubMedCrossRefGoogle Scholar
  193. Croux, C., B. Canard, G. Goma, and P. Soucaille. 1992c Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan Appl. Environ. Microbiol. 58 1075–1081PubMedGoogle Scholar
  194. Crow, V. L. 1987 Citrate cycle intermediates in the metabolism of aspartate and lactate by Propionibacterium freudenreichii subsp. shermanii Appl. Environ. Microbiol. 53 2600–2602PubMedGoogle Scholar
  195. Cueto, P. H., and B. S. Mendez. 1990 Direct selection of Clostridium acetobutylicum fermentation mutants by a protein suicide method Appl. Environ. Microbiol. 56 578–580PubMedGoogle Scholar
  196. Cummins, C., and J. L. Johnson. 1971 Taxonomy of the clostridia: Wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing clostridia J. Gen. Microbiol. 67 33–46CrossRefGoogle Scholar
  197. Cummins, C. S., and J. L. Johnson. 1986 The genus Propionibacterium In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey's Manual of Systematic Bacteriology Williams and Wilkins Baltimore MD 2 1346–1353Google Scholar
  198. Currie, J. N., and R. H. Carter (Charles Pfizer, and Co.). 1930 Gluconic Acid. US Patent 1896811 Chem. Abstr. 27 2757Google Scholar
  199. Currie, J. N., and A. Finlay. 1933 Fermentation such as the production of D-gluconic acid. US Patent 1908225 Chem. Abstr. 27 3774Google Scholar
  200. Dabrock, B., H. Bahl, and G. Gottschalk. 1992 Parameters affecting solvent production by Clostridium pasteurianum Appl. Environ. Microbiol. 58 1233–1239PubMedGoogle Scholar
  201. Daniel, R., and G. Gottschalk. 1992 Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii dha regulon FEMS Microbiol. Lett. 100 281–286Google Scholar
  202. Daniel, R., R. Boenigk, and G. Gottschalk. 1995a Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli J. Bacteriol. 177 2151–2156PubMedGoogle Scholar
  203. Daniel, R., K. Stuertz, and G. Gottschalk. 1995b Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii J. Bacteriol. 177 4392–4401PubMedGoogle Scholar
  204. Daniel, R., Bobik, T. A., and G. Gottschalk. 1999 Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes FEMS Microbiol. Rev. 22 553–566CrossRefGoogle Scholar
  205. Datta, R. 1989 Recovery and purification of lactate salts from whole fermentation broth by electrodialysis US Patent to Michigan Biotech. Inst. 4,885,247Google Scholar
  206. Datta, R. 1992a Process for the production of succinic acid by anaerobic fermentation US Patent 5,143,833Google Scholar
  207. Datta, R., D. A. Glassner, M. K. Jain, and J. R. Vick Roy. 1992b Fermentation and purification process for succinic acid US Patent 5,168,055Google Scholar
  208. Datta, R., S.-P. Tsai, P. Bonsignore, S.-H. Moon, and J. R. Frank. 1995 Technological and economic potential of poly (lactic acid) and lactic acid derivitives FEMS Microbiol. Rev. 16 221–231CrossRefGoogle Scholar
  209. Davidson, B. E., R. M. Llanos, M. R. Cancilla, N. C. Redman, and A. J. Hillier. 1995 Current research on the genetics of lactic acid production in lactic acid bacteria Int. Dairy J. 5 763–784CrossRefGoogle Scholar
  210. Dawes, E. A., and P. J. Senior. 1973 The role and regulation of energy reserve polymers in microorganisms Adv. Microb. Physiol. 10 135–266PubMedCrossRefGoogle Scholar
  211. Deckwer, W. D. 1995 Microbial conversion of glycerol to 1,3-propanediol FEMS Microbiol. Rev. 16 143–149CrossRefGoogle Scholar
  212. de F. S. Barbosa, M., and L. O. Ingram. 1994 Expression of the Zymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes in Bacillus Curr. Microbiol. 28 279–282CrossRefGoogle Scholar
  213. De Koning, G., M. Kellerhals, C. van Meurs, and B. Witholt. 1997 In: G. Eggink, A. Steinbuchel, Y. Poirer, and B. Witholt (Eds.) Proceedings of the 1996 International Symposium on Bacterial Polyhdroxyalknoates NRC Research Press 137–142Google Scholar
  214. Demain, A. L., E. L. Rickes, D. Hendlin, and E. C. Barnes. 1961 Nutritional studies on Lactobacillus heterohiochi J. Bacteriol. 81 147–153PubMedGoogle Scholar
  215. de Mas, C., N. B. Jansen, and G. T. Tsao. 1988 Production of optically active 2,3-butanediol by Bacillus polymyxa Biotechnol. Bioengin. 31 366–377CrossRefGoogle Scholar
  216. Demirci, A., and A. L. Pometto 3rd. 1992 Enhanced production of D(−) lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649 J. Ind. Microbiol. 11 23–28CrossRefGoogle Scholar
  217. Demirci, A., and A. L. Pometto 3rd. 1995 Repeated-batch fermentation in biofilm reactors with plastic composite supports for lactic acid production Appl. Microbiol. Biotechnol. 43 585–589CrossRefGoogle Scholar
  218. Dennis, D., and N. O. Kaplan. 1960 D-and L-lactic acid dehydrogenases in Lactobacillus plantarum J. Biol. Chem. 235 810–818PubMedGoogle Scholar
  219. Depasse, E. 1945 Vue d'ensemble d'une production industrielle de cétones Bull. Assoc. Chim. Sucr. Distill. Fr. 62 317–339Google Scholar
  220. Desai, R. P., and E. T. Papoutsakis. 1999 Antisense RNA stragies for metabolic engineering of Clostridium acetobytylicum Appl. Environ. Microbiol. 65 936–945PubMedGoogle Scholar
  221. DeVos, W. M., and G. F. M. Simons. 1994 Gene cloning and expression systems in Lactococci In: M. J. Gasson and W. M. DeVos (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria Blackie Academic and Professional Publishers London New York NY 52–105CrossRefGoogle Scholar
  222. DeWilt, H. G. J. 1972 Oxidation of glucose to gluconic acid Ind. Eng. Chem. Prod. Res. Dev. 11 370–378CrossRefGoogle Scholar
  223. Diaz-Torres, M., N. S. Dunn-Coleman, M. W. Chase, and D. Trimbur. 2000 Method for the recombinant production of 1,3-propanediol US Patent 6136576Google Scholar
  224. Djordjevic, G. M., D. J. O'Sullivan, S. A. Walker, M. A. Conkling, and T. R. Kaenhammer. 1997 Triggered-suicide system designed for bacteriophage defense of Lactococcus lactis J. Bacteriol. 179 6741–6748PubMedGoogle Scholar
  225. Doi, Y. 1990a Microbial Polyesters VCH New York NYGoogle Scholar
  226. Doi, Y., A. Segawa, Y. Kawaguchi, and M. Kunioka. 1990b Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus FEMS Microbiol. Lett. 67 165CrossRefGoogle Scholar
  227. Doi, Y., and K. Fukuda (Eds.). 1994 Biodegradable Plastics and Polymers Elsevier Science Amsterdam The NetherlandsGoogle Scholar
  228. Donnelly, M. I., C. S. Millard, D. P. Clark, M. J. Chen, and J. W. Rathke. 1998a A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol Appl. Biochem. Biotechnol. 70–72 187–198CrossRefGoogle Scholar
  229. Donnelly, M., C. S. Millard, and L. Stols. 1998b Mutant E. coli strain with increased succinic acid production US Patent 5,770,435Google Scholar
  230. Doran, J. B., and L. O. Ingram. 1993 Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes Biotechnol. Progr. 9 533–538CrossRefGoogle Scholar
  231. Doran, J. B., H. C. Aldrich, and L. O. Ingram. 1994 Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway Biotechnol. Bioengin. 44 240–247CrossRefGoogle Scholar
  232. Drake, H. L. 1994 Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: Past and current perspectives In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York NY 3–60CrossRefGoogle Scholar
  233. Dubos, R. J. 1988 Pasteur and Modern Science Science Tech Publishers Madison WICrossRefGoogle Scholar
  234. Dueresch, R. 1986 Fermentative maufacture of gluconic acid. German Patent DD236, 754 Chem. Abstr. 106 31387Google Scholar
  235. Dumsday, G. J., B. Zhou, W. Yaqin, G. A. Stanley, and N. B. Pamment. 1999 Comaprative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture J. Ind. Microbiol. Biotechnol. 23 701–708PubMedCrossRefGoogle Scholar
  236. Dü, P., A. Kuhn, M. Gottwald, and G. Gottschalk. 1987 Enzymatic investigations on butanol dehydrogenase and butyraldhyde dehydrogenase in extracts of Clostridium acetobutylicum Appl. Microbiol. Biotechnol. 26 268–272CrossRefGoogle Scholar
  237. Dürre, P., R. J. Fischer, A. Kuhn, K. Lorenz, W. Schreiber, B. Stürzenhofecker, S. Ullmann, K. Winzer, and U. Sauer. 1995 Solventogenic enzymes of Clostridium acetobutylicum, catalytic properties, genetic organization and transcriptional regulation FEMS Microbiol. Rev. 17 251–262PubMedCrossRefGoogle Scholar
  238. Dürre, P., and H. Bahl. 1996 Microbial production of acetone/butanol/isopropanol In: M. Roehr (Ed.) Products of Primary Metabolism, 2nd ed VCH Publisher Weinheim Germany 6 229–268Google Scholar
  239. Dürre, P. 1998 New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation Appl. Microbiol. Biotechnol. 49 639–648CrossRefGoogle Scholar
  240. Dürre, P., M. Bohringer, S. Nakotte, S. Schaffer, K. Thormann, and B. Zickner. 2002 Transcriptional regulation of solventogenesis in Clostridium acetobutylicum J. Molec. Microbiol. Biotechnol. 4 295–300Google Scholar
  241. Ebner, H., and H. Follmann. 1983 Acetic acid In: H.-J. Rehm and G. Reed (Eds.) Biotechnology VCH Weinheim Germany 3 387–407Google Scholar
  242. Ebner, H. 1985 Process for the production of vinegar with more than 12g/100ml acetic acid US Patent 4,503,078Google Scholar
  243. Ebner, H., S. Sellmer, and H. Follmann. 1996 Acetic acid In: M. Roehr (Ed.) VCH Weinheim Germany 6 381–401Google Scholar
  244. Eden, G., and G. Fuchs. 1982 Total synthesis of acetyl CoA involved in autotrophic CO2 fixation in Acetobacterium woodii Arch. Microbiol. 133 66–74CrossRefGoogle Scholar
  245. Eden, G., and G. Fuchs. 1983 Autotrophic CO2 fixation in Acetobacterium woodii. II: Demonstration of enzymes involved Arch. Microbiol. 135 68–73CrossRefGoogle Scholar
  246. Eiteman, M. A., and J. H. Miller. 1995 Effect of succinic acid on 2,3-butanediol production by Klebsiella oxytoca Biotechnol. Lett. 17 1057–1062CrossRefGoogle Scholar
  247. Ennis, B. M., and I. S. Maddox. 1985 Use of Clostridium acetobutylicum P262 for production of solvents from whey permeate Biotechol. Lett. 7 601–606CrossRefGoogle Scholar
  248. Entani, E., S. Ohmori, H. Masai, and K.-I. Suzuki. 1985 Acetobacter polyoxogenes, sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity J. Gen. Appl. Microbiol. 31 475–490CrossRefGoogle Scholar
  249. Evans, P. J., and H. Y. Wang. 1990 Effects of extractive fermentation on butyric acid production by Clostridium acetobutylicum Appl. Microbiol. Biotechnol. 32 393–397CrossRefGoogle Scholar
  250. Evans, J. D., and S. A. Martin. 1997 Factors affecting lactate and malate utilization by Selenomonas ruminantium Appl. Environ. Microbiol. 63 4853–4858PubMedGoogle Scholar
  251. Evans, V. J., H. Liyanage, A. Ravagnani, M. Young, and E. R. Kashket. 1998 Truncation of peptide deformylase reduces the growth rate and stabilizes solvent production in Clostridium beijerinckii NCIMB 8052 Appl. Environ. Microbiol. 64 1780–1785PubMedGoogle Scholar
  252. Fayolle, F., R. Marchal, and D. Ballerini. 1990 Effect of controlled substrate feeding on butyric acid production by Clostridium tyrobutyricum J. Indust. Microbiol. 6 179–183CrossRefGoogle Scholar
  253. Feldmann, S., G. A. Sprenger, and H. Sahm. 1989 Ethanol production from xylose with a pyruvate-formate-lyase mutant of Klebsiella planticola carrying a pyruvate-decarboxylase gene from Zymomonas mobilis Appl. Microbiol. Biotechnol. 31 152–157CrossRefGoogle Scholar
  254. Fernbach, A., and E. H. Strange. 1911 Acetone and higher alcohols (amyl, butyl or ethyl alcohols and butyric, propionic or acetic acid) from starches, sugars and other carbohydrates British Patent 15203–15204Google Scholar
  255. Fiedler, S., A. Steinbüchel, and B. Rehm. 2000 PhaG-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi Appl. Environ. Microbiol. 66 2117–2124PubMedCrossRefGoogle Scholar
  256. Fischer, R. J., J. Helms, and P. Dü. 1993 Cloning, sequencing and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis J. Bacteriol. 175 6959–6969PubMedGoogle Scholar
  257. Fitz, A. 1878 Über spaltpilzgärungen, IV Bericht der Deutsch. Chem. Ges. 11 1890CrossRefGoogle Scholar
  258. Flores-Encarnacion, M., and M. Contreras-Zentella. 1999 The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5 J. Bacteriol. 181 6987–6995PubMedGoogle Scholar
  259. Fond, O., N. B. Jansen, and G. T. Tsao. 1985 A model of acetic acid and 2,3-butanediol inhibition of the growth and metabolism of Klebsiella oxytoca Biotechnol. Lett. 7 727–732CrossRefGoogle Scholar
  260. Fond, O., J.-M. Engasser, G. Matta-El-Amouri, and H. Petitdemange. 1986a The acetone butanol fermentation on glucose and xylose. I: Regulation and kinetics in batch cultures Biotechnol. Bioengin. 28 160–166CrossRefGoogle Scholar
  261. Fond, O., J.-M. Engasser, G. Matta-El-Amouri, and H. Petitdemange. 1986b The acetone butanol fermentation on glucose and xylose. II: Regulation and kinetics in fed-batch cultures Biotechnol. Bioengin. 28 167–175CrossRefGoogle Scholar
  262. Fontaine, F., W. H. Peterson, E. McCoy, M. J. Johnson, and G. Ritter. 1942 A new type of glucose fermentation by Clostridium thermoaceticum, n. sp J. Bacteriol. 43 701–715PubMedGoogle Scholar
  263. Fontaine, L., I. Meynial-Salles, L. Girbal, X. Yang, C. Croux, and P. Soucaille. 2002 Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824 J. Bacteriol. 184 821–830PubMedCrossRefGoogle Scholar
  264. Forage, R. G., and M. A. Foster. 1982a Glycerol fermentation in Klebsiella pneumoniae: Functions of the coenzyme B12-dependent glycerol and diol dehydratases J. Bacteriol. 149 413–419PubMedGoogle Scholar
  265. Forage, R. G., and E. C. C. Lin. 1982b Dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418 J. Bacteriol. 151 591–599PubMedGoogle Scholar
  266. Forde, A., C. Daly, and G. F. Fitzgerald. 1999 Identification of four phage resistance plasmids from Lactococcus lactis subsp. cremoris HO2 Appl. Environ. Microbiol. 65 1540–1547PubMedGoogle Scholar
  267. Frazer, F. R., and T. A. McCaskey. 1991 Effect of components of acid-hydrolyzed hardwood on conversion of D-xylose to 2,3-butanediol by Klebsiella pneumoniae Enz. Microb. Technol. 13 110–115CrossRefGoogle Scholar
  268. Freier-Schroeder, D., J. Wiegel, and G. Gottschalk. 1989 Butanol formation by Clostridium thermosaccharolyticum at neutral pH Biotechnol. Lett. 11 831–836CrossRefGoogle Scholar
  269. Fujimaki, T. 1998 Processability and properties of aliphatic polyesters, “BIONELLE,” synthesized by polycondensation reaction Polymer. Degrad. Stabil. 59 209–214CrossRefGoogle Scholar
  270. Fukaya, M., H. Tagami, K. Tayama, H. Okumura, Y. Kawamura, and T. Beppu. 1989 Spheroplast fusion of Acetobacter aceti and its application to the breeding of strains for vinegar production Agric. Biol. Chem. 53 2435–2440CrossRefGoogle Scholar
  271. Fukaya, M., Y. S. Park, and K. Toda. 1992 Improvement of acetic acid fermentation by molecular breeding J. Appl. Bacteriol. 73 447–454CrossRefGoogle Scholar
  272. Gabriel, C. L. 1928 Butanol fermentation process Indust. Engin. Chem. 20 1063–1067CrossRefGoogle Scholar
  273. Gabriel, C. L., and F. M. Crawford. 1930 Development of the butyl-acetonic fermentation indistry Indust. Engin. Chem. 22 1163–1165CrossRefGoogle Scholar
  274. Gapes, J. R., D. Nimcevic, and A. Friedl. 1996 Long-term continuous cultivation of Clostridium beijerinckii in a two-stage chemostat with on-line solvent removal Appl. Environ. Microbiol. 62 3210–3219PubMedGoogle Scholar
  275. Gapes, J. R. 2000a The economics of the acetone-butanol fermentation: Theoretical and market considerations J. Molec. Microbiol. Biotechnol. 2 27–32Google Scholar
  276. Gapes, J. R. 2000b The history of the acetone-butanol project in Austria J. Molec. Microbiol. Biotechnol. 2 5–8Google Scholar
  277. Garg, S. K., and A. Jain. 1995 Fermentative production of 2,3-butanediol: A review Biores. Technol. 51 103–109CrossRefGoogle Scholar
  278. Gasson, M. J., and W. M. DeVos (Eds.). 1994 Genetics and Biotechnology of Lactic Acid Bacteria Blackie Academic and Professional Publishers London New York NYGoogle Scholar
  279. Gauss, W. F., S. Suzuki, and M. Takagi. 1976 US Patent 3,990,944Google Scholar
  280. George, H. A., and J.-S. Chen. 1983a Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum) Appl. Environ. Microbiol. 46 321–327PubMedGoogle Scholar
  281. George, H. A., J. L. Johnson, W. E. C. Moore, L. V. Holdeman, and J.-S. Chen. 1983b Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum Appl. Environ. Microbiol. 45 1160–1163PubMedGoogle Scholar
  282. Gerischer, U., and P. Dü. 1990 Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum J. Bacteriol. 172 6907–6918PubMedGoogle Scholar
  283. Gerngross, T. U., and D. P. Martin. 1995 Enzyme-catalyzed synthesis of poly[R-(-)-3-hydroxybutyrate]: Formation of macroscopic granules in vitro Proc. Natl. Acad. Sci. USA 92 6279–6283PubMedCrossRefGoogle Scholar
  284. Gerngross, T. U. 1999 Can biotechnology move us toward a sustainable society? Nature Biotechnol. 17 541–544CrossRefGoogle Scholar
  285. Ghazvinizadeh, H., G. C. Turtura, and C. Zambonelli. 1972 The fermentation of L-rhamnose by clostridia Ann. Microbiol. 22 155–158Google Scholar
  286. Ghommidh, C., J. M. Navarro, and G. Durand. 1981 Acetic acid production by immobilized Acetobacter cells Biotechnol. Lett. 3 93–98CrossRefGoogle Scholar
  287. Ghose, T. K., and A. Bhadra. 1985 Acetic acid In: M. Moo-Young (Ed.) Biotechnology Pergamon Press New York NY 3 701–729Google Scholar
  288. Gibbs, D. F. 1983 The rise and fall (...and rise?) of acetone/butanol fermentations Trends Biotechnol. 1 12–15CrossRefGoogle Scholar
  289. Gilles, M., K. Kerstens, B. Hoste, D. Janssens, R. M. Kroppenstedt, M. P. Stephens, K. R. S. Teixeira, J. Dobereiner, and J. DeLey. 1989 Acetobacter diazotrophicus sp. nov. a nitrogen-fixing acetic acid bacterium associated with sugar cane Int. J. Syst. Bacteriol. 39 361–364CrossRefGoogle Scholar
  290. Girbal, L., and P. Soucaille. 1994 Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: Rle of NADH/NAD ratio and ATP pool J. Bacteriol. 176 6433–6438PubMedGoogle Scholar
  291. Girbal, L., C. Croux, I. Vasconcelos, and P. Soucaille. 1995a Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824 FEMS Microbiol. Rev. 17 287–297CrossRefGoogle Scholar
  292. Girbal, L., I. Vasoncelos, S. Saint-Amans, and P. Soucaille. 1995b How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH FEMS Microbiol. Rev. 16 151–162CrossRefGoogle Scholar
  293. Girbal, L., and P. Soucaille. 1998 Regulation of solvent production in Clostridium acetobutylicum Trends Biotechnol. 16 11–16CrossRefGoogle Scholar
  294. Glassner, D. A., and R. Datta. 1992 Process for the production and purification of succinic acid US Patent 5,143, 834Google Scholar
  295. Godin, C., and J. M. Engasser. 1990 Two-stage continuous fermentation of Clostridium acetobutylicum: Effects of pH and dilution rate Appl. Microbiol. Biotechnol. 33 269–273CrossRefGoogle Scholar
  296. Gokarn, R. R., M. A. Eiteman, S. A. Martin, and K. E. L. Eriksson. 1997a Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens Appl. Biochem. Biotechnol. 68 69–80PubMedCrossRefGoogle Scholar
  297. Gokarn, R. R., M. A. Eiteman, and J. Sridhar. 1997b Production of succinate by anaerobic microorganisms American Chemical Society Symposium Series 666 237–253Google Scholar
  298. Gokarn, R. R., M. A. Eiteman, and E. Altman. 1998 Expression of pyruvate carboxylase enhances succinate production in Escherichia coli without affecting glucose uptake Biotechnol. Lett. 20 795–798CrossRefGoogle Scholar
  299. Gokarn, R. R., M. A. Eiteman, and E. Altman. 1999 Pyruvate carboxylase overexpression for enhanced production of oxalacetate-derived biochemicals in microbial cells PCT International Patent Application WO 99/53035Google Scholar
  300. Goldberg, I., K. Lonberg-Holm, E. A. Bagley, and B. Stieglitz. 1983 Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase Appl. Env. Microbiol. 45 1838–1847Google Scholar
  301. Goodlove, P. E., P. R. Cunningham, J. Parker, and D. P. Clark. 1989 Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli Gene 85 209–214PubMedCrossRefGoogle Scholar
  302. Gosalbes, M. J., C. D. Esteban, J. L. Galan, and G. Perez-Martinez. 2000 Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei Appl. Environ. Microbiol. 66 4822–4828PubMedCrossRefGoogle Scholar
  303. Gottschalk, G. 1985 Bacterial Metabolism, 2nd ed Springer-Verlag New York NY 247Google Scholar
  304. Gottschalk, G. 1986 Bacterial Metabolism, 2nd ed Springer-Verlag New York NY 97–98CrossRefGoogle Scholar
  305. Gottschalk, G., and B. Averhoff. 1992 Process for the microbiological preparation of 1,3-propane-diol from glycerol by Citrobacter US Patent 5164309Google Scholar
  306. Gottwald, M., H. Hippe, and G. Gottschalk. 1984 Formation of n-butanol from D-gucose by strains of the “Clostridium tetanomorphum” group Appl. Environ. Microbiol. 48 573–576PubMedGoogle Scholar
  307. Gottwald, M., and G. Gottschalk. 1985 The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation Arch. Microbiol. 143 42–46CrossRefGoogle Scholar
  308. Goupil-Feuillerat, N., M. Cocaign-Bousquet, J.-J. Godon, S. D. Ehrlich, and P. Renault. 1997 Dual role of a-acetolactate decarboxylase in Lactococcus lactis subsp. lactis J. Bacteriol. 179 6285–6293PubMedGoogle Scholar
  309. Green, E. M., and G. N. Bennett. 1996a Inactivation of an aldehye/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824 Appl. Biochem. Biotechnol. 57/58 213–221CrossRefGoogle Scholar
  310. Green, E. M., Z. L. Boynton, L. M. Harris, F. B. Rudolph, E. T. Papoutsakis, and G. N. Bennett. 1996b Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824 Microbiology 142 2079–2086PubMedCrossRefGoogle Scholar
  311. Greenberg, K. 1999 New PDO technologies create opportunities Chem. Mark. Rep. 255 4 and 9Google Scholar
  312. Grethlein, A. J., R. M. Worden, M. K. Jain, and R. Datta. 1990 Continuous production of mixed alcohols and acids from carbon monoxide Appl. Biochem. Biotechnol. 24–25 875–884CrossRefGoogle Scholar
  313. Grove, L. H. 1982 Process for the production of organic fuel US Patent 4326032Google Scholar
  314. Gruber, P. R., E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt. 1992 Continuous process for manufacture of lactide polymers with controlled optical purity US Patent to Cargill, Inc 5,142,023Google Scholar
  315. Gruber, P. R., E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt. 1994 Continuous process for manufacture of lactide polymers with purification by distillation US Patent to Cargill, Inc 5,357,035Google Scholar
  316. Grupe, H., and G. Gottschalk. 1992 Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction Appl. Environ. Microbiol. 58 3896–3902PubMedGoogle Scholar
  317. Gu, Z., B. A. Glatz, and C. E. Glatz. 1998 Propionic acid production by extractive fermentation. I: Solvent consideration Biotechnol. Bioeng. 57 454–461PubMedCrossRefGoogle Scholar
  318. Gu, Z., D. A. Rickert, B. A. Glatz, and C. E. Glatz. 1999 Feasibility of propionic acid production by extractive fermentation Lait 79 137–148CrossRefGoogle Scholar
  319. Guettler, M. V., and M. K. Jain. 1996a Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants US Patent 5,521,075Google Scholar
  320. Guettler, M. V., M. K. Jain, and D. Rumler. 1996b Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants US Patent 5,573, 931Google Scholar
  321. Guettler, M. V., M. K. Jain, and B. K. Soni. 1996c Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms US Patent 5,504,004Google Scholar
  322. Guettler, M. V., M. K. Jain, and B. K. Soni. 1998 Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms US Patent 5,723,322Google Scholar
  323. Guettler, M. V., D. Rumler, and M. K. Jain. 1999 Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen Int. J. Syst. Bacteriol. 49 207–216PubMedCrossRefGoogle Scholar
  324. Gunzel, B., S. Yonsel, and W. D. Deckwer. 1991 Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3 Appl. Microbiol. Biotechnol. 36 289–294CrossRefGoogle Scholar
  325. Gupta, A., V. Verma, and G. N. Quazi. 1997 Transposon induced mutation in Gluconobacter oxydans with special reference to its direct glucose oxidation metabolism FEMS Microbiol. Lett. 147 181–188PubMedCrossRefGoogle Scholar
  326. Gupta, A., M. Felder, Y. Yerma, J. Cullum, and G. N. Qazi. 1999 A mutant of Gluconobacter oxydans deficient in gluconic acid dehydrogenase FEMS Microbiol. Lett. 179 501–506PubMedCrossRefGoogle Scholar
  327. Gutierrez, N. A., and I. S. Maddox. 1992 Product inhibition in a nonmotile mutant of Clostridium acetobutylicum Enz. Microbiol. Technol. 14 101–105CrossRefGoogle Scholar
  328. Hahn, J. J., A. C. Eschenlauer, M. H. Narrol, D. A. Somers, and F. Sriene. 1997 Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures Biotechnol. Prog. 13 347–354PubMedCrossRefGoogle Scholar
  329. Hamilton, G. A., and F. H. Westheimer. 1959 A crystalline decarboxylase without biotin J. Am. Chem. Soc. 8 2277CrossRefGoogle Scholar
  330. Han, I. S., and M. Cheryan. 1996 Downstream processing of acetate fermentation broths by nanofiltration Appl. Biochem. Biotechnol. 57/58 19–28CrossRefGoogle Scholar
  331. Hancock, K. R., E. Rockman, C. A. Young, L. Pearce, I. S. Maddox, and D. B. Scott. 1991 Expression and nucleotide sequence of the Clostridium acetobutylicum β-galactosidase gene cloned in Escherichia coli J. Bacteriol. 173 3084–3095PubMedGoogle Scholar
  332. Harlander, S. K. 1987 Transformation of Streptococcus lactis by electroporation In: J. Ferretti and R. Curtiss (Eds.) Streptococcal Genetics American Society for Microbiology Washington DC 229–233Google Scholar
  333. Harris, J., R. Mulder, D. B. Kell, R. P. Walter, and J. G. Morris. 1986 Solvent production by Clostridium pasteurianum in media of high sugar content Biotechnol. Lett. 8 889–892CrossRefGoogle Scholar
  334. Harris, L. M., R. P. Desai, N. E. Welker, and E. T. Papoutsakis. 2000 Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioengin. 67 1–11CrossRefGoogle Scholar
  335. Harris, L. M., N. E. Welker, and E. T. Papoutsakis. 2002 Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824 J. Bacteriol. 184 3586–3597PubMedCrossRefGoogle Scholar
  336. Hartmanis, M. G. N. 1987 Butyrate kinase from Clostridium acetobutylicum J. Biol. Chem. 262 617–621PubMedGoogle Scholar
  337. Hastings, J. J. H. 1971 Development of the fermentation industries in Great Britain Adv. Appl. Microbiol. 14 1–45PubMedCrossRefGoogle Scholar
  338. Hastings, J. J. H. 1978 Acetone-butyl alcohol fermentation In: A. H. Rose (Ed.) Primary Products of Metabolism Academic Press London UK 31–45Google Scholar
  339. Haynie, S. L., and L. W. Wagner. 1997 Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures US Patent 5599689Google Scholar
  340. Haywood, G. W., A. J. Anderson, L. Chu, and E. A. Dawes. 1988 The role of NADH-and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus FEMS Microbiol. Lett. 52 259–264CrossRefGoogle Scholar
  341. Hein, S., H. Tran, and A. Steinbüchel. 1998 Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria Arch. Microbiol. 170 162–170PubMedCrossRefGoogle Scholar
  342. Helbert, J. R. 1982 Beer In: G. Reed (Ed.) Prescott & Dunn's Industrial Microbiology, 4th ed AVI Publishing Westport CT 403–467Google Scholar
  343. Hermann, M., F. Fayolle, R. Marchal, L. Podvin, M. Sebald, and J.-P. Vandecasteele. 1985 Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum Appl. Environ. Microbiol. 50 1238–1243PubMedGoogle Scholar
  344. Herrick, H. T., and O. E. May. 1928 The production of gluconic acid by the Penicillium luteum purpurogenum group II: Some optimal conditions for acid formation J. Biol. Chem. 77 185–195Google Scholar
  345. Heyndrickx, M., P. De Vos, M. Vancanneyt, and J. De Ley. 1991 The fermentation of glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285 Appl. Microbiol. Biotechnol. 34 637–642CrossRefGoogle Scholar
  346. Himmel, M. E., W. S. Adney, K. Grohmann, and M. P. Tucker. 1994 US Patent 5,275,944Google Scholar
  347. Himmel, M. E., W. S. Adney, J. O. Baker, R. Elander, J. D. McMillan, R. A. Nieves, J. J. Sheehan, S. R. Thomas, T. B. Vinzant, and M. Zhang. 1997 Advanced bioethanol production technologies: A perspective In: B. C. Saha and J. Woodward (Eds.) Fuels and Chemicals from Biomass American Chemical Society Washington DC ACS Symposium Series 666 2–45CrossRefGoogle Scholar
  348. Himmi, E. H., A. Bories, and F. Barbirato. 1999 Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum Biores. Technol. 67 123–138CrossRefGoogle Scholar
  349. Himmi, E. H., A. Bories, A. Boussaid, and L. Hassani. 2000 Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii Appl. Microbiol. Biotechnol. 53 435–440PubMedCrossRefGoogle Scholar
  350. Hippe, H., J. R. Andresen, and G. Gottschalk. 1991 The genus Clostridium, non-medical In: Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) The Prokaryotes. Springer-Verlag. New York, NY. 1799–1866.Google Scholar
  351. Hiu, S. F., C.-X. Zhu, R.-T. Yan, and J.-S. Chen. 1987 Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: Different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum) Appl. Environ. Microbiol. 53 697–703PubMedGoogle Scholar
  352. Hlasiwetz, H., and J. Habermann. 1870 Zur Kenntnis einiger Zuckerarten (Glucose, Rhorzucker, Levulose, Sorbin, Phloroglucin) Ann Chem. Pharm. 155 128–144CrossRefGoogle Scholar
  353. Ho, K.-L. G., A. L. Pometto 3rd, and P. N. Hinz. 1997a Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation Appl. Environ. Microbiol. 63 2533–2542PubMedGoogle Scholar
  354. Ho, K.-L. G., A. L. Pometto 3rd, P. N. Hinz, and A. Demirci. 1997b Nutrient leaching and end product accumutation in plastic composite supports for L-(+)-lactic acid biofilm fermentation Appl. Environ. Microbiol. 63 2524–2532PubMedGoogle Scholar
  355. Ho, K.-L. G., A. L. Pometto 3rd, P. N. Hinz, J. S. Dickson, and A. Demirci. 1997c Ingredients selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus Appl. Environ. Microbiol. 63 2516–2523PubMedGoogle Scholar
  356. Hocking, P. J., and R. H. Marchessault. 1994 Biopolymers In: G. J. L. Griffin (Ed.) Chemistry and Technology of Biodegradable Polymers Chapman and Hall London 48–96CrossRefGoogle Scholar
  357. Hoffman, J. 2001 Butadiene hit hard by sharp drop in derivatives demand Chem. Mark. Rep. 260 1 and 12Google Scholar
  358. Holland-Staley, C. A., K. Lee, D. P. Clark, and P. R. Cunningham. 2000 Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid J. Bacteriol. 18(2) 6049–6054PubMedCrossRefGoogle Scholar
  359. Holt, R. A., G. M. Stephens, and J. G. Morris. 1984 Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH Appl. Environ. Microbiol. 48 1166–1170PubMedGoogle Scholar
  360. Holt, R. A., A. J. Cairns, and J. G. Morris. 1988 Production of butanol by Clostridium puniceum in batch and continuous culture Appl. Microbiol. Biotechnol. 27 319–324CrossRefGoogle Scholar
  361. Holten, C. M., A. Muller, and D. Rehbinder (Eds.). 1971 Lactic Acid Weinheim/Bergstr GermanyGoogle Scholar
  362. Homann, T., C. Tag, H. Biebl, W. D. Deckwer, and B. Schink. 1990 Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains Appl. Microbiol. Biotechnol. 33 121–126CrossRefGoogle Scholar
  363. Hong, R. 1999 The Cloning of a Putative Regulatory Gene and the sol Region from Clostridium beijerinckii M.S. thesis Virginia Polytechnic Institute and State University Blacksburg VAGoogle Scholar
  364. Hongo, M., and A. Murata. 1965a Bacteriophages of Clostridium saccharoperbutylacetonicum. Part I: Some characteristics of the twelve phages obtained from the abnormally fermented broths Agric. Biol. Chem. 29 1135–1139CrossRefGoogle Scholar
  365. Hongo, M., and A. Murata. 1965b Bacteriophages of Clostridium saccharoperbutylacetonicum. Part II: Enumeration of phages by the application of the plaque count technique and some factors influencing the plaque formation Agric. Biol. Chem. 29 1140–1145CrossRefGoogle Scholar
  366. Hoppner, T. C., and H. W. Doelle. 1983 Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production Eur. J. Appl. Microbiol. Biotechnol. 17 152–157CrossRefGoogle Scholar
  367. Houben, M. C. M. 1995 Oxygenated blending components for gasoline-alcohols and ethers In: E. L. Marshall and K. Owen (Ed.) Motor Gasoline: Critical Reports on Applied Chemistry Royal Society of Chemistry Cambridge UK 34 45–71Google Scholar
  368. Houge, C. 2000 Getting the MTBE out Chem Eng. News 6Google Scholar
  369. Howaldt, M., A. Gottlob, K. D. Kulba, and H. Chmiel. 1988 Simultaneous conversion of glucose/fructose mixtures in a membrane reactor Ann. NY Acad. Sci. 542 400–405CrossRefGoogle Scholar
  370. Howaldt, M., K. D. Kulbe, and H. Chmiel. 1990 A continous enzyme membrane reactor retaining native nicotinamide cofactor NAD (H) Ann. NY Acad. Sci. 589 253–260CrossRefGoogle Scholar
  371. Howard, W. L. 1991 Acetone In: J. I. Kroschwitz and M. Howe-Grant (Eds.) Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed John Wiley New York NY 1 176–194Google Scholar
  372. Hrabak, O. 1992 Industrial production of poly-β-hydroxybutyrate FEMS Microbiol. Rev. 103 251–256Google Scholar
  373. Hromatka, O., and H. Ebner. 1949 Investigations on vinegar fermentation: Generator for vinegar fermentation and aeration procedures Enzymologia 13 369Google Scholar
  374. Hsu, S. T., and S. T. Yang. 1991 Propionic acid fermentation of lactose by Propionibacterium acidipropionici—effects of pH Biotechnol. Bioeng. 38 571–578PubMedCrossRefGoogle Scholar
  375. Huang, Y., and S. T. Yang. 1998a Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor Biotechnol. Bioeng. 60 498–507PubMedCrossRefGoogle Scholar
  376. Huang, Y. L., K. Mann, and J. M. Mavak. 1998b Acetic acid production from fructose by Clostridium formicaceticum immobilized in a fibrous bed bioreactor Biotechnol. Prog. 800–806Google Scholar
  377. Huang, K.-X., F. B. Rudolph, and G. N. Bennett. 1999 Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol Appl. Environ. Microbiol. 65 3244–3247PubMedGoogle Scholar
  378. Huang, K.-X., S. Huang, F. B. Rudolph, and G. N. Bennett. 2000 Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824 J. Molec. Microbiol. Biotechnol. 2 33–38Google Scholar
  379. Huff, G. F., and N. Yata. 1976 US Patent 3,990,945Google Scholar
  380. Husemann, M., and E. T. Papoutsakis. 1986 Effect of acetoacetate, butyrate, and uncoupling ionophores on growth and product formation of Clostridium acetobutylicum Biotechnol. Lett. 8 37–42CrossRefGoogle Scholar
  381. Husemann, M. H. W., and E. T. Papoutsakis. 1988 Solventoggenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations Biotechnol. Bioengin. 32 843–852CrossRefGoogle Scholar
  382. Husemann, M. H. W., and E. T. Papoutsakis. 1989 Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum Appl. Microbiol. Biotechnol. 30 585–595CrossRefGoogle Scholar
  383. Ingram, L. O., and T. M. Buttke. 1984 Effects of alcohols on micro-organisms Adv. Microb. Physiol. 25 253–300PubMedCrossRefGoogle Scholar
  384. Ingram, L. O. 1986 Microbial tolerance to alcohols: Role of the cell membrane Trends Biotechnol. 4 40–44CrossRefGoogle Scholar
  385. Ingram, L. O., T. Conway, D. P. Clark, G. W. Sewell, and J. F. Preston. 1987 Genetic engineering of ethanol production in Escherichia coli Appl. Environ. Microbiol. 53 2420–2425PubMedGoogle Scholar
  386. Ingram, L. O., and T. Conway. 1988 Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli Appl. Environ. Microbiol. 54 397–404PubMedGoogle Scholar
  387. Ingram, L. O., and K. M. Dombek. 1989 Effects of ethanol on Escherichia coli In: N. van Uden (Ed.) Alcohol Toxicity in Yeasts and Bacteria CRC Press Boca Raton FL 227–237Google Scholar
  388. Ingram, L. O. 1990 Ethanol tolerance in bacteria Crit. Rev. Biotechnol. 9 305–319PubMedCrossRefGoogle Scholar
  389. Ingram, L. O., F. Alterthum, and T. Conway. 1991 US Patent 5,000,000Google Scholar
  390. Ingram, L. O., and D. C. Clark. 1992 US Patent 5,028,539Google Scholar
  391. Ingram, L. O., and J. B. Doran. 1995a Conversion of cellulosic materials to ethanol FEMS Microbiol. Rev. 16 235–241CrossRefGoogle Scholar
  392. Ingram, L. O., D. S. Beall, G. F. H. Burchhardt, W. V. Guimaraes, K. Ohta, B. E. Wood, K. T. Shanmugam, D. E. Fowler, and B.-B. A. 1995b US Patent 5,424,202Google Scholar
  393. Ingram, L. O., and M. D. F. Barbosa-Alleyne. 1996 US Patent 5,482,846Google Scholar
  394. Ingram, L. O., and K. W. Ohta, B. E. 1998a US Patent 5821093Google Scholar
  395. Ingram, L. O., P. F. Gomez, X. Lai, M. Moniruzzaman, B. E. Wood, L. P. Yamano, and S. W. York. 1998b Metabolic engineering of bacteria for ethanol production Biotechnol. Bioengin. 58 204–214CrossRefGoogle Scholar
  396. Ingram, L. O., H. C. Aldrich, A. C. C. Borges, T. B. Causey, A. Martinez, F. Morales, A. Saleh, S. A. Underwood, L. P. Yomano, S. W. York, J. Zaldivar, and S. Zhou. 1999 Enteric bacterial catalysts for fuel ethanol production Biotechnol. Progr. 15 855–866CrossRefGoogle Scholar
  397. Inoue, Y., and A. Kimura. 1995 Methylglyoxal and regulation of its metabolism in microorganisms Adv. Microb. Physiol. 37 177–227PubMedCrossRefGoogle Scholar
  398. Inskeep, G. C., G. G. Taylor, and W. C. Breitzke. 1952 Lactic acid from corn sugar Ind. Eng. Chem. 44 1955–1966CrossRefGoogle Scholar
  399. Isbell, H. S., H. L. Frush, and F. J. Bates. 1932 Manufacture of calcium gluconate by electrolytic oxidation of glucose Ind. Eng. Chem. 24 375–378CrossRefGoogle Scholar
  400. Ishizaki, A., N. Taga, T. Takeshita, T. Sugimoto, T. Tsuge, and K. Tanaka. 1997 Microbial production of biodegradable plastics from carbon dioxide and agricultural waste material In: B. C. Saha and J. Woodward (Eds.) Fuels and Chemicals from Biomass American Chemical Society Washington DC 295–306Google Scholar
  401. Ismaiel, A. A., C.-X. Zhu, G. D. Colby, and J.-S. Chen. 1993 Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii J. Bacteriol. 175 5097–5105PubMedGoogle Scholar
  402. Ismaiel, A. A., and J. S. Chen. 1998 Purification of the aldehyde-alcohol dehydrogenase encoded by the aad gene from Clostridium acetobutylicum ATCC 824 In: Abstracts of the 98th General Meeting of the American Society of Microbiology American Society for Microbiology Washington, D.C. O-40 400Google Scholar
  403. Iversen, T.-G., R. Standal, T. Pederson, and D. H. Caucheron. 1994 IS 1032 from Acetobacter xylinum, a new mobile insertion sequence Plasmid 32 46–54PubMedCrossRefGoogle Scholar
  404. Jabalquinto, A. M., M. Laivenieks, J. G. Zeikus, and E. Cardemil. 1999 Characterization of the oxaloacetate decarboxylase and pyruvate kinase-like activities of Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinases J. Prot. Chem. 18 659–664CrossRefGoogle Scholar
  405. Jackson, M. D., and C. B. Moyer. 1991 Alcohol fuels In: J. I. Kroschwitz and M. Howe-Grant (Eds.) Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed John Wiley & Sons New York NY 1 826–864Google Scholar
  406. Jan, G., A. Rouault, and J. L. Maubois. 2000 Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii Lait 80 325–336CrossRefGoogle Scholar
  407. Jan, G., P. Leverrier, V. Pichereau, and P. Boyaval. 2001 Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii Appl. Environ. Microbiol. 67 2029–2036PubMedCrossRefGoogle Scholar
  408. Jansen, N. B., and G. T. Tsao. 1983 Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae In: A. Fiechter and T. W. Jeffries (Eds.) Advances in Biochemical Engineering/Biotechnology Springer-Verlag New York NY 27 85–99Google Scholar
  409. Jansen, N. B., M. C. Flickinger, and G. T. Tsao. 1984 Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724 Biotechnol. Bioengin. 26 362–369CrossRefGoogle Scholar
  410. Jarvis, L. 2001 Lactic acid outlook up as polylactide nears market Chemical Market Reporter 259(9) 5, 14Google Scholar
  411. Jendrossek, D., M. Backhaus, and M. Andermann. 1995 Characterization of the Comamonas sp. poly(3-hydroxybutyrate) (PHB) depolymerase and of its structural gene Can. J. Microbiol. 41 160–169PubMedCrossRefGoogle Scholar
  412. Jendrossek, D., A. Schirmer, and H. G. Schlegel. 1996 Biodegradation of polyhydroxyalkanoic acids Appl. Microbiol. Biotechnol. 46 451–463PubMedCrossRefGoogle Scholar
  413. Jin, Z. W., and S. T. Yang. 1998 Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici Biotechnol. Prog. 14 457–465PubMedCrossRefGoogle Scholar
  414. Joachimsthal, E., K. D. Haggett, J.-H. Jang, and P. L. Rogers. 1998 A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations Biotechnol. Lett. 20 137–142CrossRefGoogle Scholar
  415. Johansen, L., Bryn, K., and F. C. Stormer. 1975 Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes J. Bacteriol. 123 1124–1130PubMedGoogle Scholar
  416. John, M. E., and G. Keller. 1996 Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells Proc. Natl. Acad. Sci. USA 93 12768–12773PubMedCrossRefGoogle Scholar
  417. Johnson, J. L. 1984 Bacterial classification. III: Nucleic acids in bacterial classification In: N. R. Krieg and J. G. Holt (Eds.) Bergey's Manual of Systematic Bacteriology Williams and Wilkins Baltimore MD 1 8–11Google Scholar
  418. Johnson, J. L., and J.-S. Chen. 1995 Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms FEMS Microbiol. Rev. 17 233–240CrossRefGoogle Scholar
  419. Johnson, J. L., J. Toth, S. Santiwatanakul, and J.-S. Chen. 1997 Cultures of “Clostridium acetobutylicum” from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation Int. J. Syst. Bacteriol. 47 420–424PubMedCrossRefGoogle Scholar
  420. Jones, R. P., and P. Greenfield. 1982 Effect of carbon dioxide on yeast growth and fermentation Enz. Microbiol. Technol. 4 210–223CrossRefGoogle Scholar
  421. Jones, D. T., W. A. Jones, and D. R. Woods. 1985 Production of recombinants after protoplast fusion in Clostridium acetobutylicum P262 J. Gen. Microbiol. 131 1213–1216Google Scholar
  422. Jones, D. T., and D. R. Woods. 1986 Acetone-butanol fermentation revisited Microbiol. Rev. 50 484–524PubMedGoogle Scholar
  423. Jones. D. T. 1993 Mutagenesis and its application to biotechnology In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann London 77–98Google Scholar
  424. Jones, D. T., and S. Keis. 1995 Origins and relationships of industrial solvent-producing clostridial strains FEMS Microbiol. Rev. 17 223–232CrossRefGoogle Scholar
  425. Jones, D. T., M. Shirley, X. Wu, and S. Keis. 2000 Bacteriophage infections in the industrial AB fermentation process J. Molec. Microbiol. Biotechnol. 2 21–26Google Scholar
  426. Jossek, R., and A. Steinbüchel. 1998 In vitro synthesis of poly-(3-hydroxybutyric acid) by using an enzymatic coenzyme A recycling system FEMS Microbiol. Lett. 168 319–324PubMedCrossRefGoogle Scholar
  427. Junelles, A.-M., R. Janati-Idrissi, A. El Kanouni, H. Petitdemange, and R. Gay. 1987 Acetone-butanol fermentation by mutants selected for resistance to acetate and butyrate halogen analogues Biotechnol. Lett. 9 175–178CrossRefGoogle Scholar
  428. Juni, E., and G. A. Heym. 1956 A cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetylmethylcarbinol, and diacetyl. I: General aspects of the 2,3-butanediol cycle J. Bacteriol. 71 425–432PubMedGoogle Scholar
  429. Kandler, O., and N. Weiss. 1986 In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe and J. G. Holt (Eds.) [ {http://www.cme.msu.edu/bergeys} Bergey's Manual of Systematic Bacteriology] Williams & Wilkins Baltimore MD 2 1208–1234Google Scholar
  430. Kaneuchi, C., M. Seki, and K. Komagata. 1988 Production of succinic acid from citric acid and related acids by Lactobacillus strains Appl. Environ. Microbiol. 54 3053–3056PubMedGoogle Scholar
  431. Kansiz, M., H. Billman-Jacobe, and D. McNaughton. 2000 Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant Esherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics Appl. Environ. Microbiol. 66 3415–3420PubMedCrossRefGoogle Scholar
  432. Kashket, E. R., and Z. Y. Cao. 1995 Clostridial strain degeneration FEMS Microbiol. Rev. 17 307–315CrossRefGoogle Scholar
  433. Kawaguchi, Y., and Y. Doi. 1990 Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction FEMS Microbiol. Lett. 70 151–156Google Scholar
  434. Kawaguchi, Y., and Y. Doi. 1992 Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus Macromolecules 25 2324–2329CrossRefGoogle Scholar
  435. Keis, S., C. F. Bennett, V. K. Ward, and D. T. Jones. 1995 Taxonomy and phylogeny of industrial solvent-producing clostridia Int. J. Syst. Bacteriol. 45 693–705PubMedCrossRefGoogle Scholar
  436. Keis, S., R. Shaheen, and D. T. Jones. 2001a Emended description of Clostridium acetobutylicum and Clostridium beijerinckii and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov Int. J. Syst. Evol. Microbiol. 51 2095–2103PubMedCrossRefGoogle Scholar
  437. Keis, S., J. T. Sullivan, and D. T. Jones. 2001b Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome Microbiology 147 1909–1922PubMedGoogle Scholar
  438. Kelly, F. C. 1936 One Thing Leads To Another Houghton Mifflin Boston MAGoogle Scholar
  439. Kennedy, J. F., J. D. Humphreys, S. A. Barker, and R. N. Greenshields. 1980 Application of living immobilized cells to the acceleration of the continuous conversions of ethanol (wort) to acetic acid (vinegar) by hydrous titanium (IV) oxide-immobilized Acetobacter species Enz. Microbiol. Technol. 2 209–216CrossRefGoogle Scholar
  440. Keshav, K. F., L. P. Yomano, H. An, and L. O. Ingram. 1990 Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): Sequence comparison and expression in Escherichia coli J. Bacteriol. 172 2491–2497PubMedGoogle Scholar
  441. Kessler, D., I. Leibrecht, and J. Knappe. 1991 Pyruvate-formate-lyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE FEBS Lett. 281 59–63PubMedCrossRefGoogle Scholar
  442. Kessler, D., W. Herth, and J. Knappe. 1992 Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli J. Biol. Chem. 267 18073–18079PubMedGoogle Scholar
  443. Kiatpapan, P., Y. Hashimoto, H. Nakamura, Y.-Z. Piao, H. Ono, M. Yamashita, and Y. Murooka. 2000 Characterization of pRG01, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria Appl. Environ. Microbiol. 66 4688–4695PubMedCrossRefGoogle Scholar
  444. Killeffer, D. H. 1927 Butanol and acetone from corn Indust. Engin. Chem. 19 46–50CrossRefGoogle Scholar
  445. Kim, D. M., and H. S. Kim. 1992a Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxido reductase from Zymomonas mobilis and inulinase Biotechnol. Bioeng. 39 336–342PubMedCrossRefGoogle Scholar
  446. Kim, B. S., S. Y. Lee, and H. N. Chang. 1992b Production of poly-beta-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli Biotechnol. Lett. 14 811–816CrossRefGoogle Scholar
  447. Kim, B. S., S. C. Lee, S. Y. Lee, H. N. Chang, Y. K. Chang, and S. I. Woo. 1994 Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control Biotechnol. Bioeng. 43 892–898PubMedCrossRefGoogle Scholar
  448. Kim, S. W., P. Kim, H. S. Lee, and J. H. Kim. 1996 High production of poly-beta-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation Biotechnol. Lett. 18 25–30CrossRefGoogle Scholar
  449. Kim, G. J., I. Y. Lee, S. C. Yoon, Y. C. Shih, and Y. H. Park. 1997 Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate Enz. Microb. Technol. 20 500–505CrossRefGoogle Scholar
  450. Kinoshita, S., T. Kakizono, K. Kadota, K. Das, and H. Taguchi. 1985 Purification of two alcohol dehydrogenases from Zymomonas mobilis and their properties Appl. Microbiol. Biotechnol. 22 249–254CrossRefGoogle Scholar
  451. Kirk Othmer. 1983 Succinic acid and succinic anhydride Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed 21 848–864Google Scholar
  452. Kirschner, E. M. 1996 Growth of top 50 chemicals slowed from very high 1994 rate Chem. Eng. News 74(15) 16–19Google Scholar
  453. Kitahara, K., T. Kaneko, and O. Goto. 1957 Taxonomic studies on the hiochi-bacteria specific saprophytes of sake. I: Isolation and grouping of bacterial strains J. Gen. Appl. Microbiol. (Japan) 3 102–110CrossRefGoogle Scholar
  454. Klaenhammer, T. R., and G. F. Fitzgerald. 1994 Bacteriophages and bacteriophage resistance In: M. J. Gasson and W. M. DeVos (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria Blackie Academic and Professional Publishers London New York NY 106–168CrossRefGoogle Scholar
  455. Klapatch, R. R., M. L. Guerinot, and L. R. Lynd. 1996 Electrotransformation of Clostridium thermosaccharolyticum J. Ind. Microbiol. 16 342–347PubMedCrossRefGoogle Scholar
  456. Klasson, K. T., M. D. Ackerson, E. C. Clausen, and J. L. Gaddy. 1992 Bioconversion of synthesis gas into liquid or gaseous fuels Enzyme Microbiol. Technol. 14 602–608CrossRefGoogle Scholar
  457. Klinke, S., G. de Roo, B. Witholt, and B. Kessler. 2000 Role of phaD in accumulation of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas olevorans Appl. Environ. Microbiol. 66 3705–3710PubMedCrossRefGoogle Scholar
  458. Knauf, H. J., R. F. Vogel, and W. P. Hammes. 1992 Cloning, sequence, and phenotypic expression of KatA which encodes the catalase of Lactobacillus sake LTH677 Appl. Environ. Microbiol. 58 832–839PubMedGoogle Scholar
  459. Kok, J., and J. M. DeVos. 1994 The proteolytic system of lactic acid bacteria In: M. J. Gasson and W. M. DeVos (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria Blackie Academic and Professional Publishers London New York NY 169–210CrossRefGoogle Scholar
  460. Konda, T., and M. Konda. 1996 Efficient production of acetic acid from glucose in a mixed culture of Zymomonas mobilisand Acetobacter sp J. Ferment. Bioeng. 81 42–46CrossRefGoogle Scholar
  461. Kondo, K., and S. Horinouchi. 1997 A new insertion sequence IS 1452 from Acetobacter pasteurianus Microbiology 143 539–546PubMedCrossRefGoogle Scholar
  462. Korkhin, Y., A. J. Kalb(Gilboa), M. Peretz, O. Bogin, Y. Burstein, and F. Frolow. 1998 NADP-dependent bacterial alcohol dehydrogenases: Crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii J. Molec. Biol. 278 967–981PubMedCrossRefGoogle Scholar
  463. Kosaric, N. 1996 Ethanol-potential source of energy and chemical products In: H.-J. Rehm and G. Reed (Eds.) Biotechnology VCH New York NY 6 123–203Google Scholar
  464. Kusano, K., H. Yamada, M. Niwa, and K. Yamasoto. 1997 Propionibacterium cyclohexanicum sp nov., a new acid-tolerant omega-cyclohexy/fatty acid-containing propionibacterium isolated from spoiled orange juice Int. J. Syst. Bacteriol. 47 825–831PubMedCrossRefGoogle Scholar
  465. Kutzenok, A., and M. Aschner. 1952 Degenerative processes in a strain of Clostridium butylicum J. Bacteriol. 64 829–836PubMedGoogle Scholar
  466. Kutzing, F. T. 1837 Prakt. Chem. J. 11 385CrossRefGoogle Scholar
  467. Kwon, Y. J., R. Kaol, and B. Mattiasson. 1996 Extractive lactic acid fermentation in Poly (ethyleneimine)-based aqueous two-phase system Biotechnol. Bioeng. 50 280–290PubMedCrossRefGoogle Scholar
  468. Ladisch, M. R. 1991 Fermentation-derived butanol and scenarios for its uses in energy-related applications Enz. Microbiol. Technol. 13 280–283CrossRefGoogle Scholar
  469. Laffend, L. A., V. Nagarajan, and C. E. Nakamura. 1997 Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism US Patent. 5686276Google Scholar
  470. Laffend, L. A., V. Nagarajan, and C. E. Nakamura. 2000 Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism US Patent. 6025184Google Scholar
  471. Laivenieks, M., C. Vielle, and J. G. Zeikus. 1997 Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene Appl. Env. Microbiol. 63 2272–2280Google Scholar
  472. Lamed, R. J., and J. G. Zeikus. 1981 Novel NADP-linked alcohol-aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria Biochem. J. 195 183–190PubMedGoogle Scholar
  473. Landucci, R., B. Goodman, and C. Wyman. 1994 Methodology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks Appl. Biochem. Biotechnol. 45/46 677–696CrossRefGoogle Scholar
  474. Largier, S. T., S. Long, J. D. Santangelo, D. T. Jones, and D. R. Woods. 1985 Immobilized Clostridium acetobutylicum P 262 mutants for solvent production Appl. Environ. Microbiol. 50 477–481PubMedGoogle Scholar
  475. Larsen, S. H., and F. C. Stormer. 1973 Diacetyl (Acetoin) reductase from Aerobacter aerogenes Eur. J. Biochem. 34 100–106PubMedCrossRefGoogle Scholar
  476. Larsen, L., P. Nielsen, and B. K. Ahring. 1997 Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland Arch. Microbiol. 168 114–119PubMedCrossRefGoogle Scholar
  477. Laube, V. M., D. Groleau, and S. M. Martin. 1984 2,3-butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa Biotechnol. Lett. 6 257–262CrossRefGoogle Scholar
  478. Layman, P. 1998 Acetic acid industry gears up for possible building boom Chem. Eng. News 76(31) 17–18Google Scholar
  479. Leaf, T. A., M. S. Peterson, S. K. Stoup, D. Somers, and F. Srienc. 1996 Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate Microbiol. 142 1169–1180CrossRefGoogle Scholar
  480. Lee, S. F., C. W. Forsberg, and L. N. Gibbins. 1985 Cellulolytic activity of Clostridium acetobutylicum Appl. Environ. Microbiol. 50 220–228PubMedGoogle Scholar
  481. Lee, H. K., and I. S. Maddox. 1986 Continuous production of 2,3-butanediolfrom whey permeate using Klebsiella pneumoniae immobilized in calcium alginate Enz. Microb. Technol. 8 409–411CrossRefGoogle Scholar
  482. Lee, S. Y., G. N. Bennett, and E. T. Papoutsakis. 1992 Construction of Escherichia coli-Clostridium acetobutylicum shuttle vectors and transfromation of Clostridium acetobutylicum strains Biotechnol. Lett. 14 427–432CrossRefGoogle Scholar
  483. Lee, Y.-E., M. K. Jain, C. Lee, S. E. Lowe, and J. G. Zeikus. 1993 Taxonomic distinction of saccharolytic thermophilic anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., and Thermoanaerobacter thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus Int. J. Syst. Bacteriol. 43 41–51CrossRefGoogle Scholar
  484. Lee, S. Y., and H. N. Chang. 1995a Production of poly(hydroxyalkanoic acid) Adv. Biochem. Eng. Biotechnol. 52 27–58PubMedGoogle Scholar
  485. Lee, S. Y., and H. N. Chang. 1995b Production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli strains: Genetic and fermentation studies Can. J. Microbiol. 41, Suppl. 1 207–215PubMedCrossRefGoogle Scholar
  486. Lee, S. Y., Y. K. Lee, and H. N. Chang. 1995c Stimulatory effects of amino acids and oleic acid on poly(3-hydroxybutyric acid) synthesis by recombinant Escherichia coli J. Ferment. Bioeng. 79 177–180CrossRefGoogle Scholar
  487. Lee, S. Y. 1996a Bacterial polyhydroxyalkanoates Biotechnol. Bioeng. 49 1–14PubMedCrossRefGoogle Scholar
  488. Lee, S. Y. 1996b Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria Trends Biotechnol. 14 431–438CrossRefGoogle Scholar
  489. Lee, I. Y., M. K. Kim, Y. H. Park, and S. Y. Lee. 1996c Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli Biotechnol. Bioeng. 52 707–712PubMedCrossRefGoogle Scholar
  490. Lee, S. Y. 1997 E. coli moves into the plastic age Nature Biotechnol. 15 17–18CrossRefGoogle Scholar
  491. Lee, P. C., W. G. Lee, S. Kwon, S. Y. Lee, and H. N. Chang. 1999a Succinic acid production by Anaerobiospirillum succiniciproducens: Effects of the H2/CO2 supply and glucose concentration Enz. Microbiol. Technol. 24 549–554CrossRefGoogle Scholar
  492. Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang. 1999b Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production Proc. Biochem. 35 49–55CrossRefGoogle Scholar
  493. Lee, S. Y., Y. Lee, and F. L. Wang. 1999c Chiral compounds from bacterial polyesters: Sugars to plastics to fine chemicals Biotechnol. Bioeng. 65 363–368PubMedCrossRefGoogle Scholar
  494. Lefranc, L. et Cie. 1923 A process for the manufacture of butyric acid and other fatty acids with recovery of the gases of fermentation. British Patent 186-572 Chem Abstr. 17 324Google Scholar
  495. Leh, M. B., and M. Charles. 1989 The effect of whey protein hydrolyzate average molecular weight on the lactic acid fermentation J. Ind. Microbiol. 4 77–80CrossRefGoogle Scholar
  496. Leigh, J. A., F. Mayer, and R. S. Wolfe. 1981 Acetogenium kivui a new thermophilic hydrogen-oxidizing, acetogenic bacterium Arch. Microbiol. 129 275–280CrossRefGoogle Scholar
  497. Lemme, C. J., and J. R. Frankiewicz. 1985 Strains of Clostridium acetobutylicum and process for its preparation US Patent 4521516Google Scholar
  498. Lemmel, S. A. 1985 Mutagenesis in Clostridium acetobutylicum Biotechnol. Lett. 7 711–716CrossRefGoogle Scholar
  499. Lemmel, S. A., R. Datta, and J. R. Frankiewicz. 1986 Fermentation of xylan by Clostridium acetobutylicum Enz. Microbiol. Technol. 8 217–221CrossRefGoogle Scholar
  500. Lemoigne, M. 1925 Etudes sur l'autolyze microbienne acidification par formation d'acide β-oxybutyrique Ann. Inst. Pasteur 39 144–173Google Scholar
  501. Lemoigne, M. 1926 Produits de déshydration et de polymérisation de l'acide β-oxybutyrique Bull. Soc. Chim. Biol. 8 770–782Google Scholar
  502. Lemoigne, M., and H. Girard. 1943 Réserves lipidiques β-hydroxybutyriques chez Azotobacter chroococcum Comp. Rend. Acad. Sci. 217 557–558Google Scholar
  503. Lenz, T. G., and A. R. Moreira. 1980 Economic evaluation of the acetone-butanol fermentation Indust. Engin. Chem. Prod. Res. Devel. 19 478–483CrossRefGoogle Scholar
  504. Lepage, C., F. Fayolle, M. Hermann, and J.-P. Vandecasteele. 1987 Changes in membrane liquid composition of Clostridium acetobutylicum during acetone-butanol fermentation: Effects of solvents, growth temperature and pH J. Gen. Microbiol. 133 103–110Google Scholar
  505. Lewis, V. P., and S. T. Yang. 1992 Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed bed bioreactor Biotechnol. Bioeng. 40 465–474PubMedCrossRefGoogle Scholar
  506. Li, G. 1998 Development of a Reporter System for the Study of Gene Expression for Solvent Production in Clostridium beijerinckii NRRL B582 and Clostridium acetobutylicum ATCC 824 [PhD thesis] Virginia Polytechnic Institute and State University Blacksburg VAGoogle Scholar
  507. Liebergesell, M., E. Hustede, A. Timm, A. Steinbüchel, R. C. Fuller, R. W. Lenz, and H. G. Schlegel. 1991 Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria Arch. Microbiol. 155 415–421CrossRefGoogle Scholar
  508. Lin, Y.-L., and H. P. Blaschek. 1984 Transformation of heat-treated Clostridium acetobutylicum protoplasts with pUB110 plasmid DNA Appl. Environ. Microbiol. 48 737–742PubMedGoogle Scholar
  509. Lin, R. W., E. E. Atkinson, and D. E. Balhoff. 1996 Process for producing (S,S)-ethylenediamine-N,N′-disuccinic acid US Patent 5554791Google Scholar
  510. Lin, M.-Y., S. Harlander, and D. Saviano. 1999 Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus Appl. Microb. Biotechnol. 45 484–489Google Scholar
  511. Linden, J. C., and R. H. Kuhn. 1989 Biochemistry of alcohol effects on Clostridia In: N. van Uden (Ed.) Alcohol Toxicity in Yeasts and Bacteria CRC Press Boca Raton FL 271–291Google Scholar
  512. Lindsay, S. E., R. J. Bothast, and L. O. Ingram. 1995 Improved strains of recombinant Escherichia coli for ethanol production from sugar mixture Appl. Microbiol. Biotechnol. 43 70–75PubMedCrossRefGoogle Scholar
  513. Lipinsky, E. S., and R. G. Sinclair. 1986 Is lactic acid a commodity chemical? Chem. Eng. Prog. 82(8) 26–32Google Scholar
  514. Litchfield, J. H. 1996 Microbial production of lactic acid Adv. Appl. Microbiol. 42 45–95PubMedCrossRefGoogle Scholar
  515. Liu, S.-Y., F. A. Rainey, H. W. Morgan, F. Mayer, and J. Wiegel. 1996 Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium Int. J. Syst. Bacteriol. 46 388–396CrossRefGoogle Scholar
  516. Liu, S.-J., and A. Steinbüchel. 2000a Exploitation of butyrate kinase and phosphotransbutyrylase from Clostridium acetobutylicum for the in vitro biosynthesis of poly(hydroxyalkanoic acid) Appl. Microbiol. Biotechnol. 53 545–552PubMedCrossRefGoogle Scholar
  517. Liu, S.-J., and A. Steinbüchel. 2000b A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli Appl. Environ. Microbiol. 66 739–743PubMedCrossRefGoogle Scholar
  518. Ljungdahl, L. G. 1986 The autotrophic pathway of acetate synthesis in acetogenic bacteria Ann. Rev. Microbiol. 40 415–450CrossRefGoogle Scholar
  519. Ljungdahl, L. G. 1994 The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York NY 63–85CrossRefGoogle Scholar
  520. Lockwood, L. B., D. E. Yoder, and M. Zienty. 1965 Lactic acid Ann. NY Acad. Sci. 119 854–867PubMedCrossRefGoogle Scholar
  521. Logsdon, J. E. 1994 Ethanol In: J. I. Kroschwitz and M. Howe-Grant (Eds.) Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed John Wiley & Sons New York NY 9 812–860Google Scholar
  522. Logsdon, J. E., and R. A. Loke. 1996 Isopropyl alcohol In: J. I. Kroschwitz and M. Howe-Grant (Eds.) Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed John Wiley New York NY 20 216–240Google Scholar
  523. Logsdon, J. E., and R. A. Loke. 1999 Isopropyl alcohols In: J. I. Kroschwitz (Ed.) Kirk-Othmer Concise Encyclopedia of Chemical Technology, 4th ed John Wiley New York NY 1654–1656Google Scholar
  524. Loos, H., R. Krämer, H. Sahm, and G. A. Sprenger. 1994 Sorbitol promotes growth of Zymomonas mobilis in environment with high concentrations of sugar: Evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection J. Bacteriol. 176 7688–7693PubMedGoogle Scholar
  525. Lorowitz, W. H., and M. P. Bryant. 1984 Peptostreptococcus productusstrain that grows rapidly with CO as an energy source Appl. Environ. Microbiol. 47 961–964PubMedGoogle Scholar
  526. Lowe, S. E., M. K. Jain, and J. G. Zeikus. 1993 Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates Microbiol. Rev. 57 451–509PubMedGoogle Scholar
  527. Lowenheim, F. A., and M. K. Moran. 1975 Industrial Chemicals, 4th ed John Wiley & Sons New York NYGoogle Scholar
  528. Luchansky, J. B., P. M. Muriana, and T. R. Klaenhammer. 1988 Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus, and Propionibacterium Molec. Microbiol. 2 637–646CrossRefGoogle Scholar
  529. Luers, F. M., R. Seyfried, R. Daniel, and G. Gottschalk. 1997 Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: Cloning and expression of the gene encoding 1,3-propanediol dehydrogenase FEMS Microbiol. Lett. 154 337–345PubMedCrossRefGoogle Scholar
  530. Lugar, R. G., and R. J. Woolsey. 1999 The new petroleum Foreign Affairs 78 88–102CrossRefGoogle Scholar
  531. Lund, B. M., T. F. Brocklehurst, and G. M. Wyatt. 1981 Characterization of strains of Clostridium puniceum sp. nov., a pink-pigmented, pectolytic bacterium J. Gen. Microbiol. 122 17–26Google Scholar
  532. Luttik, M. A. H., R. Van Spanning, D. Schipper, J. P. Van Dijken, and J. T. Pronk. 1997 The low biomass yields of the acetic acid bacterium Acetobacter pasteurianus are due to a low stoichiometry of respiration-coupled proton translocation Appl. Envron. Microbiol. 63 3345–3351Google Scholar
  533. Lynd, L. R. 1989 Ethanol production from lignocellulosic substrates using thermophilic bacteria Adv. Biochem. Eng. Biotechnol. 38 1–52Google Scholar
  534. Lynd, L. R., J. H. Cushman, R. J. Nichols, and C. E. Wyman. 1991 Fuel ethanol from cellulosic biomass Science 251 1318–1323PubMedCrossRefGoogle Scholar
  535. Lynd, L. R., S. Baskaran, and S. Casten. 2001 Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture Biotechnol. Progr. 17 118–125CrossRefGoogle Scholar
  536. Lyon, W. J., and B. A. Glatz. 1995 Propionibacteria In: Y. H. Hui and G. G. Khachatourians (Eds.) Food Biotechnology, Microorganisms VCH Publishers New York NY 703–719Google Scholar
  537. Macis, L., R. Daniel, and G. Gottschalk. 1998 Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of Clostridium pasteurianum FEMS Microbiol. Lett. 164 21–28PubMedCrossRefGoogle Scholar
  538. Mackenzie, K. F., C. K. Eddy, and L. O. Ingram. 1989 Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc J. Bacteriol. 171 1063–1067PubMedGoogle Scholar
  539. Maddox, I. S. 1980 Production of n-butanol from whey filtrate using Clostridium acetobutylicum NCIB 2951 Biotechnol. Lett. 2 493–498CrossRefGoogle Scholar
  540. Maddox, I. S. 1996 Microbial production of 2, 3-butanediol In: H.-J. Rehm and G. Reed (Eds.) Biotechnology, 2nd ed VCH New York NY 6 270–291Google Scholar
  541. Maddox, I. S., E. Steiner, S. Hirsch, S. Wessner, N. A. Gutierrez, J. R. Gapes, and K. C. Schuster. 2000 The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process J. Molec. Microbiol. Biotechnol. 2 95–100Google Scholar
  542. Madison, L. L., and G. W. Huisman. 1999 Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic Microbiol. Molec. Biol. Rev. 63 21–53Google Scholar
  543. Mai, V., W. W. Lorenz, and J. Wiegel. 1997 Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance FEMS Microbiol. Lett. 148 163–167CrossRefGoogle Scholar
  544. Mai, V., and J. Wiegel. 2000 Advances in development of a genetic system for Thermoanaerobacterium spp.: Expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into chromosome Appl. Environ. Microbiol. 66 4817–4821PubMedCrossRefGoogle Scholar
  545. Malinowski, J. J. 1999 Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol Biotechnol. Tech. 13 127–130CrossRefGoogle Scholar
  546. Malinowski, J. J. 2000 Reactive extraction for downstream separation of 1,3-propanediol Biotechnol. Prog. 16 76–79PubMedCrossRefGoogle Scholar
  547. Marchal, R., M. Ropars, J. Pourquie, F. Fayolle, and J. P. Vandecasteele. 1992 Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part II: Conversion into acetone-butanol Biores. Technol. 42 205–217CrossRefGoogle Scholar
  548. Martin, M. E., M. Wayman, and G. Graf. 1961 Fermentation of sulfite waste liquor to produce organic acids Can. J. Microbiol. 7 341–346PubMedCrossRefGoogle Scholar
  549. Martin, M. C., J. C. Alonso, J. E. Suarez, and M. A. Alvarez. 2000 Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination Appl. Environ. Microbiol. 66 2599–2604PubMedCrossRefGoogle Scholar
  550. Mat-Jan, F., Alam, K. Y., and D. P. Clark. 1989 Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase J. Bacteriol. 171 342–348PubMedGoogle Scholar
  551. Matsusaki, H., H. Abe, K. Taguchi, T. Fukui, and Y. Doi. 2000 Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3 Appl. Microbiol. Biotechnol. 53 401–409PubMedCrossRefGoogle Scholar
  552. Matsushita, K., H. Toyama, and O. Adachi. 1994 Respiratory chains and bioenergetics of acetic acid bacteria Adv. Microb. Physiol. 36 247–301PubMedCrossRefGoogle Scholar
  553. Mattsson, D. M., and P. Rogers. 1994 Analysis of Tn916-induced mutants of Clostridium acetobutylicum altered in solventogenesis and sporulation J. Ind. Microbiol. 13 258–268PubMedCrossRefGoogle Scholar
  554. May, O. E., H. T. Herrick, A. J. Moyer, and P. A. Wells. 1934 Gluconic acid-production by submerged mold growths under increased air pressure Ind. Eng. Chem. 26 575–578CrossRefGoogle Scholar
  555. McCoy, E., E. B. Fred, W. H. Peterson, and E. G. Hastings. 1926 A cultural study of the acetone butyl alcohol organism J. Infect. Dis. 39 457–483CrossRefGoogle Scholar
  556. McCoy, E., and L. S. McClung. 1935 Studies on anaerobic bacteria J. Infect. Dis. 56 333–346CrossRefGoogle Scholar
  557. McCoy, E., and E. B. Fred. 1941 The stability of a culture for industrial fermentation J. Bacteriol. 41 90–91Google Scholar
  558. McCoy, M. 1998 Biomass ethanol inches forward Chem. Eng. News 76 29–32Google Scholar
  559. McCutchan, W. N., and R. J. Hickey. 1954 The butanol-acetone fermentations In: L. A. Underkofler and R. J. Hickey (Eds.) Industrial Fermentations Chemical Publishing New York NY 1 347–388Google Scholar
  560. McGee, H. 1984 On Food and Cooking: The Science and Lore of the Kitchen Scribner's New York NY 36Google Scholar
  561. McLellan, P. J., A. J. Daugulis, and J. Li. 1999 The incidence of oscillatory behavior in the continuous fermentation of Zymomonas mobilis Biotechnol. Progr. 15 667–680CrossRefGoogle Scholar
  562. McNeil, B., and B. Kristiansen. 1986 The acetone butanol fermentation Adv. Appl. Microbiol. 31 61–92CrossRefGoogle Scholar
  563. Meinecke, B., H. Bahl, and G. Gottschalk. 1984 Selection of an asporogenous strain of Clostridium acetobutylicum in continuous culture under phosphate limitation Appl. Environ. Microbiol. 48 1064–1065PubMedGoogle Scholar
  564. Menzel, K., A. P. Zeng, and W. D. Deckwer. 1997 High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae Enz. Microbiol. Technol. 20 82–86CrossRefGoogle Scholar
  565. Mercenier, A., P. H. Pouwels, and B. M. Chassy. 1994 Genetic engineering of lactobacilli, leuconostocs, and Streptococcus thermophilus In: M. J. Gasson and W. M. DeVos (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria Blackie Academic and Professional Publishers London New York NY 252–293CrossRefGoogle Scholar
  566. Mercier, P., L. Yerushalmi, D. Rouleau, and D. Dochain. 1992 Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus J. Chem. Tech. Biotechnol. 55 111–121Google Scholar
  567. Mermelstein, L. D., N. E. Welker, G. N. Bennett, and E. T. Papoutsakis. 1992 Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824 Biotechnology 10 190–195PubMedCrossRefGoogle Scholar
  568. Mermelstein, L. D., and E. T. Papoutsakis. 1993a Evaluation of macrolide and lincosamide antibiotics for plasmid maintenance in low pH Clostridium acetobutylicum ATCC 824 fermentations FEMS Microbiol. Lett. 113 71–76CrossRefGoogle Scholar
  569. Mermelstein, L. D., and E. T. Papoutsakis. 1993b In vivo methylation in Escherichia coli by the Bacillus subtilis phage 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824 Appl. Environ. Microbiol. 59 1077–1081PubMedGoogle Scholar
  570. Mermelstein, L. D., E. T. Papoutsakis, D. J. Petersen, and G. N. Bennett. 1993c Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon Biotechnol. Bioengin. 42 1053–1060CrossRefGoogle Scholar
  571. Mermelstein, L. D., N. E. Welker, D. J. Petersen, G. N. Bennett, and E. T. Papoutsakis. 1994 Genetic and metabolic engineering of Clostridum acetobutylicom. ATCC 824 Ann. NY Acad. Sci. 721 54–68PubMedCrossRefGoogle Scholar
  572. Mesa, M. M., I. Caro, and D. Cantero. 1996 Viability reduction of Acetobacter aceti due to the absence of oxygen in submerged culture Biotech. Progress 12 709–712CrossRefGoogle Scholar
  573. Michel-Savin, D., R. Marchal, and J. P. Vandecasteele. 1990a Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum Appl. Microbiol. Biotechnol. 32 387–392CrossRefGoogle Scholar
  574. Michel-Savin, D., R. Marchal, and J. P. Vandecasteele. 1990b Butyrate production in continuous culture of Clostridum tyrobutyricum Appl. Microbiol. Biotechnol. 33 127–131CrossRefGoogle Scholar
  575. Michel-Savin, D., R. Marchal, and J. P. Vandecasteele. 1990c Butyric fermentation: Metabolic behavior and production performance of Clostridium tryobutyricum in a continuous culture with cell recycle Appl. Microbiol. Biotechnol. 34 172–177CrossRefGoogle Scholar
  576. Mickelson, M. N., and C. H. Werkman. 1940 Formation of trimethyleneglycol from glycerol by Aerobacter Enzymologia 8 252–256Google Scholar
  577. Millard, C. S., Y. P. Chao, J. C. Liao, and M. I. Donnelly. 1996 Enhanced production of succinic acid by overexpression of phosphoenolpyruvate caboxylase in Escherichia coli Appl. Env. Microbiol. 62 1808–1810Google Scholar
  578. Milson, P. E., and J. L. Meers. 1985 Gluconic and itaconic acids In: M. Moo-Young (Ed.) Comprehensive Biotechnology Pergamon Press Oxford 3 681–700Google Scholar
  579. Minton, N. P., and J. D. Oultram. 1988 Host:vector systems for gene cloning in Clostridium Microbiol. Sci. 5 310–315PubMedGoogle Scholar
  580. Minton, N. P., J. K. Brehm, T. J. Swinfield, S. W. Whelan, M. L. Mauchline, N. Bodsworth, and J. D. Oultrum. 1993 Clostridial cloning vectors In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann London 120–150Google Scholar
  581. Mishra, P., and S. Kaur. 1991 Lipids as modulators of ethanol tolerance in yeast Appl. Microbiol. Biotechnol. 34 697–702CrossRefGoogle Scholar
  582. Misoph, M., and H. L. Drake. 1996 Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1 J. Bacteriol. 178 3140–3145PubMedGoogle Scholar
  583. Mitchell, W. J. 1998 Physiology of carbohydrate to solvent conversion by clostridia Adv. Microb. Physiol. 39 31–130PubMedCrossRefGoogle Scholar
  584. Mobley, D. P. (Ed.). 1994 Plastics from Microbes Hanser Munich GermanyGoogle Scholar
  585. Möller, B., R. Ossmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984 Sporomusa, a new genus of Gram negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov Arch. Microbiol. 139 388–396CrossRefGoogle Scholar
  586. Molliard, M. 1922 Survene nouvelle fermentation acide produite par le Sterigmatcystis nigra C.R. Hebd. Seances Acad. Sci. 174 881–883Google Scholar
  587. Monot, F., J.-M. Engasser, and H. Petitdemange. 1984 Influence of pH and undissociated butyric acid in the production of acetone and butanol in batch cultures of Clostridium acetobutylicum Appl. Microbiol. Biotechnol. 19 422–426CrossRefGoogle Scholar
  588. Montoya, D., C. Arevalo, S. Gonzales, F. Aristizabal, and W. H. Schwarz. 2001 New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum J. Ind. Microbiol. Biotechnol. 27 329–335PubMedCrossRefGoogle Scholar
  589. Moore, S. K. 1999 DuPont, Genencor close in on biological propanediol route Chem. Week 161 17Google Scholar
  590. Moreira, A. R., D. C. Ulmer, and J. C. Linden. 1981 Butanol toxicity in butylic fermentation Biotechnol. Bioengin. Symp. 11 567–579Google Scholar
  591. Mori, A., and G. Tervi. 1972 Kinetic studies on submerged acetic acid fermentation. III: Efficiency of energy metabolism in acetic acid fermentation using Acetobacter rancens J. Ferment. Technol. 50 510–517Google Scholar
  592. Mori, A. 1993 Vinegar production in a fluidized-bed reactor with immobilized bacteria In: A. Tanaka, T. Tosa, and T. Kobayashi (Eds.) Industrial Application of Immobilized Biocatalysts Dekker New York NY 291–313Google Scholar
  593. Morris, J. G. 1993 History and future potential of the clostridia in biotechnology In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann London 1–23Google Scholar
  594. Moyer, A. J., P. A. Wells, J. J. Stubbs, H. T. Herrick, and O. E. May. 1937 Gluconic acid production-development of innoculum and composition of fermentation solution for gluconic acid production by submerged mold growths under increased air pressure Ind. Eng. Chem. 29 777–781CrossRefGoogle Scholar
  595. Muller, H. M., and D. Seebach. 1993 Poly(hydroxyfettsaureester) eine funfte Klasse von physiologisch bedeutsamen organischen Biopolymeren? Agnew. Chem. 105 483–459CrossRefGoogle Scholar
  596. Müller, V., and G. Gottschalk. 1994 The sodium ion cycle in acetogenic and methanogenic bacteria: Generation and utilization of a primary electrochemical sodium ion gradient In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York NY 125–156Google Scholar
  597. Muraoka, H., Y. Watabe, and N. Ogasawara. 1982 Effect of oxygen deficiency on acid production and morphology of bacterial cells in submerged acetic fermentation by Acetobacter aceti J. Ferment. Technol. 60 171–180Google Scholar
  598. Muriana, P. M., and T. R. Klaenhammer. 1991 Cloning, phenotypic expression, and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by Lactobacillus spp J. Bacteriol. 173 1779–1788PubMedGoogle Scholar
  599. Nagarajan, V., and C. E. Nakamura. 1998 Production of 1,3-propanediol from glycerol by recombinant bacteria expressing recombinant diol dehydratase US Patent 5821092Google Scholar
  600. Nair, R. V., G. N. Bennett, and E. T. Papoutsakis. 1994 Molecular characterization of an alcohol/aldehyde dehydrogenase gene of Clostridium acetobutylicum ATCC 824 J. Bacteriol. 176 871–885PubMedGoogle Scholar
  601. Nakamura, C. E., A. A. Gatenby, A. K. Hsu, R. D. LaReau, S. L. Haynie, R. Diaz-Torres, D. E. Trimbur, G. M. Whited, A. Nagarajan, M. S. Payne, S. K. Picataggio, and R. V. Nair. 2000 Method for the production of 1,3-propanediol by recombinant microorganisms US Patent 6013494Google Scholar
  602. Nakano, M. M., Y. P. Dailly, P. Zuber, and D. P. Clark. 1997 Characterization of anaerobic fermentative growth of Bacillus subtilis: Identification of fermentation end products and genes required for growth J. Bacteriol. 179 6749–6755PubMedGoogle Scholar
  603. Nakas, J. P., M. Schaedle, C. M. Parkinson, C. E. Coonley, and S. W. Tanenbaum. 1983 System development for linked-fermentation production of solvents from algal biomass Appl. Environ. Microbiol. 46 1017–1023PubMedGoogle Scholar
  604. Nakashimada, Y., K. Kanai, and N. Nishio. 1998 Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture Biotechnol. Lett. 20 113–1138CrossRefGoogle Scholar
  605. Nakashimada, Y., B. Marwoto, T. Kashiwamura, T. Kakizono, and N. Nishio. 2000 Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa J. Biosci. Bioeng. 90 661–664PubMedGoogle Scholar
  606. Nakotte, S., S. Schaffer, M. Bohringer, and P. Dü. 1998 Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792 Appl. Microbiol. Biotechnol. 50 564–567PubMedCrossRefGoogle Scholar
  607. Narayan, R. 1994 Impact of governmental policies, regulations, and standards activities on an emerging biodegradable plastics industry In: Y. Doi and K. Fukuda (Eds.) Biodegradable Plastics and Polymers Elsevier Science Amsterdam The Netherlands 261–272Google Scholar
  608. Nativel, F., J. Pourquie, D. Ballerini, J. P. Vandecasteele, and P. Renault. 1992 The biotechnology facilities at Soustons for biomass conversion Int. J. Solar Energy 11 219–229CrossRefGoogle Scholar
  609. Nawrath, C., Y. Poirier, and C. Somerville. 1994 Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation Proc. Natl. Acad. Sci. USA 91 12760–12764PubMedCrossRefGoogle Scholar
  610. Neale, A. D., R. K. Scopes, J. M. Kelly, and R. E. H. Wettenhall. 1986 The two alcohol dehyrogenases of Zymomonas mobilis: Purification by differential dye ligand chromatography, molecular characterisation and physiological roles Eur. J. Biochem. 154 119–124PubMedCrossRefGoogle Scholar
  611. Neale, A. D., R. K. Scopes, R. E. H. Wettenhall, and N. J. Hoogenraad. 1987 Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis Nucleic Acids Res. 15 1753–1761PubMedCrossRefGoogle Scholar
  612. Neale, A. D., R. K. Scopes, and J. M. Kelly. 1988 Alcohol production from glucose and xylose using Escherichia coli containing Zymomonas mobilis genes Appl. Microbiol. Biotechnol. 29 162–167Google Scholar
  613. Nghiem, N. P., B. H. Davison, J. E. Thompson, B. E. Suttle, and G. R. Richardson. 1996 The effect of biotin on the production of succinic acid by Anaerobiospirillum succiniciproducens Appl. Biochem. Biotechnol. 57/58 633–638CrossRefGoogle Scholar
  614. Nghiem, N. P., B. H. Davison, B. E. Suttle, and G. R. Richardson. 1997 Production of succinic acid by Anaerobiospirillum succiniciproducens Appl. Biochem. Biotechnol. 63–65 565–576PubMedCrossRefGoogle Scholar
  615. Nghiem, N. P., M. I. Donnelly, and C. S. Millard. 1999 Method for the production of dicarboxylic acids US Patent 5,869,301Google Scholar
  616. Nickol, G. B. 1979 Vinegar In: H. J. Peppler and D. Pearlman (Eds.) Microbial Technology Academic Press New York NY 2 155–172Google Scholar
  617. Nidetzky, B., M. Furlinger, and D. Gollhofer. 1997 Improved operational stability of cell-free glucose-fructose oxidoreductase from Zymomonas mobilis for the efficient synthesis of gluconic acid and sorbitol, in acoutin ultra filtration membrane reactor Biotechnol. Bioeng. 53 623–629PubMedCrossRefGoogle Scholar
  618. Nilegaonkar, S., S. B. Bhosale, D. C. Kshirsagar, and A. H. Kapadi. 1992 Production of 2,3-butanediol from glucose by Bacillus licheniformis World J. Microbiol. Biotechnol. 8 378–381CrossRefGoogle Scholar
  619. Nimcevic, D., M. Schuster, and J. R. Gapes. 1998 Solvent production by Clostridium beijerinckii NRRL B592 growing on different potato media Appl. Microbiol. Biotechnol. 50 426–428PubMedCrossRefGoogle Scholar
  620. Nimcevic, D., and J. R. Gapes. 2000 The acetone-butanol fermentation in pilot plant and pre-industrial scale J. Molec. Microbiol. Biotechnol. 2 15–20Google Scholar
  621. Nishikawa, M., R. M. R. Brancon, K. L. Pinder, and G. A. Strasdine. 1970 Fermentation of spent sulfite liquor to produce acetic acid, propionic acid and vitamin B12 Pulp and Paper Magazine of Canada 71(3) T59–T64Google Scholar
  622. Nishioka, M., T. Tuzuki, Y. Wanajyo, H. Oonami, and T. Horiuchi. 1994 Biodegradation of Bionolle Stud. Polym. Sci. 12 584–590Google Scholar
  623. Nölling, J., G. Breton, M. V. Omelchenko, K. S. Markarova, Q. Zeng, R. Gibson, H. M. Lee, J. DuBois, D. Qiu, J. Hitti, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Y. I. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith. 2001 Genome sequence and comparitive analysis of the solvent-producing bacterium Clostridium acetobutylicum J. Bacteriol. 183 4823–4838Google Scholar
  624. Noon, R. 1982 Power-grade butanol Chemtech 12 681–683Google Scholar
  625. Northrop, J. H., L. H. Ashe, and J. K. Senior. 1919 Biochemistry of Bacillus acetoethylicum with reference to the formation of acetone J. Biol. Chem. 39 1–21Google Scholar
  626. Noury, and N. V. van der Lande. 1962 Process for preparation of gluconic acid monohydrate. British Patent 902609 Chem. Abstr. 57 13020gGoogle Scholar
  627. Oben, J. M., M. J. Amagro, and A. Manjon. 1996 Continuous retention of native NADP(H) in an enzyme membrane reactor for gluconate and glutamate production J. Biotechnol. 50 27–36CrossRefGoogle Scholar
  628. Ogata, S., and M. Hongo. 1979 Bacteriophages of the genus Clostridium Adv. Appl. Microbiol. 25 241–273PubMedCrossRefGoogle Scholar
  629. Ohta, K., D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram. 1991a Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II Appl. Environ. Microbiol. 57 893–900PubMedGoogle Scholar
  630. Ohta, K., D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram. 1991b Metabolic engineering of Klebsilla oxytoca M5A1 for ethanol production from xylose and glucose Appl. Environ. Microbiol. 57 2810–2815PubMedGoogle Scholar
  631. Oiwa, H., M. Naganuma, and S.-I. Ohnuma. 1987 Acetone-butanol production from dahlia inulin by Clostridium pasteurianum var. I-53 Agric. Biol. Chem. 51 2819–2820CrossRefGoogle Scholar
  632. Okumura, H., H. Tagami, M. Fukaya, H. Masai, Y. Kawamura, S. Horinouchi, and T. Beppu. 1988 Cloning of the β-isopropylmalate dehydrogenase gene from Acetobacter aceti and its use for construction of a new host vector system for Acetobacter Agric. Biol. Chem. 52 3125–3129CrossRefGoogle Scholar
  633. Olijve, W., and J. J. Kok. 1979a An analysis of growth of Gluconobacter oxydans in chemostat cultures Arch. Microbiol. 121 291–297CrossRefGoogle Scholar
  634. Olijve, W., and J. J. Kok. 1979b Analysis of growth of Gluconobacter oxydans in glucose containing medium Arch. Microbiol. 121 283–290CrossRefGoogle Scholar
  635. O'Mullan, P. J., S. E. Buchholz, T. Chase Jr., and D. E. Eveleigh. 1995 Roles of alcohol dehydrogenases of Zymomonas mobilis (ZADH): Characterization of a ZADH-2-negative mutant Appl. Microbiol. Biotechnol. 43 675–678CrossRefGoogle Scholar
  636. O'Neill, H., S. G. Mayhew, and G. Butler. 1998 Cloning and analysis of the genes for a novel electron-transferring flavoprotein from Megasphaera elsdenii J. Biol. Chem. 273 21015–21024PubMedCrossRefGoogle Scholar
  637. Osuga, J., A. Mori, and J. Kato. 1984 Acetic acid production by immobilized Acetobacter aceti cells entrapped in a kappa-carrageenan gel J. Ferment. Technol. 62 139–149Google Scholar
  638. Osuna, J., X. Soberon, and E. Morett. 1997 A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition Protein Sci. 6 543–555PubMedCrossRefGoogle Scholar
  639. Oude Elferink, S. J. W. H., J. Krooneman, J. C. Gorrschal, S. F. Spoelstra, F. Faber, and F. Driehuis. 2001 Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri Appl. Environ. Microbiol. 67 125–132PubMedCrossRefGoogle Scholar
  640. Ouellette, J. 2000 PO and PG markets face tight margins Chem. Mark. Rep. 257 5 and 14Google Scholar
  641. Oultram, J. D., and M. Young. 1985 Conjugal transfer of plasmid pAMβ1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum FEMS Microbiol. Lett. 27 129–134Google Scholar
  642. Oultram, J. D., A. Davies, and M. Young. 1987 Conjugal transfer of a small plasmid from Bacillus subtilis to Clostridium acetobutylicum by cointegrate formation with plasmid pAMβ1 FEMS Microbiol. Lett. 42 113–119Google Scholar
  643. Oultram, J. D., M. Loughlin, T.-J. Swinfield, J. K. Brehm, D. E. Thompson, and N. P. Minton. 1988 Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation FEMS Microbiol. Lett. 56 83–88CrossRefGoogle Scholar
  644. Oultram, J. D., I. D. Burr, M. J. Elmore, and N. P. Minton. 1993 Cloning and sequence analysis of the genes encoding phosphotransbutyrylase and butyrate kinase from Clostridium acetobutylicum NCIMB 8052 Gene 131 107–112PubMedCrossRefGoogle Scholar
  645. Owen, K., and T. Coley. 1990 Oxygenated blend components for gasoline Automotive Fuels Handbook Society of Automotive Engineers Warrendale PA 221–259Google Scholar
  646. Page, W. J., and A. Cornish. 1993 Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-beta-hydroxybutyrate Appl. Environ. Microbiol. 59 4236–4244PubMedGoogle Scholar
  647. Paik, H. D., and B. A. Glatz. 1994 Propionic acid production by immobilized cells of a propionate-tolerant strain of Propionibacterium acidipropionici Appl. Microbiol. Biotechnol. 42 22–27PubMedCrossRefGoogle Scholar
  648. Palosaari, N. R., and P. Rogers. 1988 Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum J. Bacteriol. 170 2971–2976PubMedGoogle Scholar
  649. Pan, J. G., S. A. Soo, C. K. Park, P. Kim, D. E. Chang, and J. E. Kim. 1999 A pta ldhA double mutant Escherichia coli SS373 and the method of producing succinic acid therefrom PCT Application WO 99/06532Google Scholar
  650. Papanikolaou, S., P. Ruiz-Sanchez, B. Pariset, F. Blanchard, and M. Fick. 2000 High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain J. Biotechnol. 77 191–208PubMedCrossRefGoogle Scholar
  651. Papoutsakis, E. T., and C. L. Meyer. 1985 Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations Biotechol. Bioengin. 27 50–66CrossRefGoogle Scholar
  652. Papoutsakis, E. T., and G. N. Bennett. 1993 Cloning, structure, and expression of acid and solvent pathway genes of Clostridium acetobutylicum In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann London 157–200Google Scholar
  653. Papoutsakis, E. T., and G. N. Bennett. 1999 Molecular regulation and metabolic engineering of solvent production by Clostridium acetobutylicum In: E. T. Papoutsakis and S. Y. Lee (Eds.) Bioprocess Technology Marcel Dekker New York NY 24 253–279Google Scholar
  654. Paquet, V., C. Croux, G. Goma, and P. Soucaille. 1991 Purification and characterization of the extracellular α-amylase from Clostridium acetobutylicum Appl. Environ. Microbiol. 57 212–218PubMedGoogle Scholar
  655. Parekh, S. R., and M. Cheryan. 1991 Production of acetate by mutant strains of Clostridium thermoaceticum Appl. Microbiol. Biotechnol. 36 384–387CrossRefGoogle Scholar
  656. Parekh, S. R., and M. Cheryan. 1994a Continuous production of acetate by Clostridium thermoaceticum in a cell-recycle membrane bioreactor Enz. Microb. Technol. 16 104–109CrossRefGoogle Scholar
  657. Parekh, S. R., and M. Cheryan. 1994b High concentrations of acetate with a mutant strain of Clostridium thermoaceticum Biotechnol. Lett. 16 139–142CrossRefGoogle Scholar
  658. Park, Y. S., H. Ohtake, M. Fukaya, H. Okumura, Y. Kawamura, and K. Toda. 1989 Acetic acid production using a fermenter equipped with a hollow fiber filter module Biotechnol. Bioeng. 33 918–923PubMedCrossRefGoogle Scholar
  659. Park, Y. S., H. Ohtake, M. Fukaya, H. Kawamura, and K. Toda. 1991 Production of high concentration of acetic acid by Acetobacter aceti using a repeated fed-batch culture with cell recycling Appl. Microbiol. Biotechnol. 35 149–153Google Scholar
  660. Park, D. H., and G. K. Zeikus. 1999 Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of netural red in membrane-driven fumarate reduction and energy conservation J. Bacteriol. 181 2403–2410PubMedGoogle Scholar
  661. Parrer, G., G. Schroll, J. R. Gapes, W. Lubitz, and K. C. Schuster. 2000 Conversion of solvent evaporation residues from the AB-(acetone-butanol) bioprocess into bacterial cells accumulating thermoplastic polyesters J. Molec. Microbiol. Biotechnol. 2 81–86Google Scholar
  662. Pasteur, L. 1861a Animalcules infusoires vivant sans gaz oxygène libre et déterminant des fermentations Comptes Rendus 52 344–347Google Scholar
  663. Pasteur, L. 1861b Mémoire sur les corpuscles organisés qui éxistent dans l'atmosphere: Esamen de la doctrine des générations spontanées Annales Sci. Natur., 4th series 16 5–98Google Scholar
  664. Pasteur, L. 1868 Etudes sur le vinaigre, sa fabrication se maladres, moyens de les préveair nouvelles observations sur la conservation des vinc par la châleur Gauthier-Villars Paris FRGoogle Scholar
  665. Pasteur, L. 1879 Studies on Fermentation LondonGoogle Scholar
  666. Pedroni, P., A. Volpe, G. Galli, G. M. Mura, C. Pratesi, and G. Grandi. 1995 Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: Evidence for a relationship to bacterial sulfite reductases Microbiology 141 449–458PubMedCrossRefGoogle Scholar
  667. Peguin, S., G. Goma, P. Delorme, and P. Soucaille. 1994 Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition Appl. Microbiol. Biotechnol. 42 611–616CrossRefGoogle Scholar
  668. Peoples, O. P., S. Masamune, C. T. Walsh, and A. J. Sinskey. 1987 Biosynthetic thiolase from Zoogloea ramigera. III: Isolation and characterization of the structural gene J. Biol. Chem. 262 97–102PubMedGoogle Scholar
  669. Peoples, O. P., and A. J. Sinskey. 1989 Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase J. Biol. Chem. 264 15293–15297PubMedGoogle Scholar
  670. Peretz, M., O. Bogin, S. Tel-Or, A. Cohen, G. Li, J.-S. Chen, and Y. Burstein. 1997 Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenase from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii Anaerobe 3 259–270PubMedCrossRefGoogle Scholar
  671. Perozich, J., H. Nicholas, B. C. Wang, R. Lindahl, and J. Hempel. 1999 Relationships within the adehyde dehydrogenase extended family Protein Sci. 8 137–146PubMedCrossRefGoogle Scholar
  672. Petersen, D. J., R. W. Welch, F. B. Rudolph, and G. N. Bennett. 1991 Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824 J. Bacteriol. 173 1831–1834PubMedGoogle Scholar
  673. Petersen, D. J., J. W. Cary, J. Vanderleyden, and G. N. Bennett. 1993 Sequence and arrangement of genes encoding enzymes of the acetone-production pathway of Clostridium acetobutylicum ATCC 824 Gene 123 93–97PubMedCrossRefGoogle Scholar
  674. Petitdemange, H., C. Cherrier, G. Raval, and R. Gay. 1976 Regulation of NADH and NADPH ferredoxin oxidoreductases in clostridia of the butyric group Biochem. Biophys. Acta 421 334–347PubMedCrossRefGoogle Scholar
  675. Petitdemange, E., C. Durr, S. Abbad-Andalousi, and G. Raval. 1995 Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum J. Indust. Microbiol. 15 498–502CrossRefGoogle Scholar
  676. Pflugmacher, U., and G. Gottschalk. 1994 Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii Appl. Microbiol. Biotechnol. 41 313–316CrossRefGoogle Scholar
  677. Philips, J. R., E. C. Clausen, and J. L. Gaddy. 1994 Synthesis gas as substrate for the biological production of fuels and chemicals Appl. Biochem. Biotechnol. 45–46 145–157CrossRefGoogle Scholar
  678. Phillips, M. A. 1963 Catalytic hydrogenation of glucose to sorbitol using a highly active catalyst Br. Chem. Eng. 8(11) 767–769Google Scholar
  679. Pierce, S. M., and M. Wayman. 1983 Diesel fuel by fermentation of wastes US Patent 4368056Google Scholar
  680. Piveteau, P. 1999 Metabolism of lactate and sugars by dairy propionibacteria: A review Lait 79 23–41CrossRefGoogle Scholar
  681. Planas, J., P. Radström, F. Tjerneld, and B. Hahn-Hägerdal. 1996 Enhanced production of lactic acid through the use of a novel aqueous two-phase system as an extractive fermentation system Appl. Microbiol. Biotechnol. 45 737–743CrossRefGoogle Scholar
  682. Playne, M. J. 1985 Propionic acid and butyric acid In: Moo-Young (Ed.) Comprehensive Biotechnology Pergamon New York NY 3 731–755Google Scholar
  683. Podkovyrov, S. M., and J. G. Zeikus. 1993 Purification and characterization of phosphoenolpyruvate carboxykinase, a catabolic CO2-fixing enzyme, from Anaerobiospirillum succiniciproducens J. Gen. Microbiol. 139 223–228PubMedCrossRefGoogle Scholar
  684. Poehland, H. D., V. Schierz, and R. Schumann. 1993 Optimization of gluconic acid synthesis by removing limitations and inhibitions Acta Biotechnol. 13 257–268CrossRefGoogle Scholar
  685. Poirier, Y., D. E. Dennis, K. Klomparens, and C. Somerville. 1992 Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants Science 256 520–522PubMedCrossRefGoogle Scholar
  686. Poirier, Y., C. Nawrath, and C. Somerville. 1995 Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants Bio/technology 13 142–150PubMedCrossRefGoogle Scholar
  687. Posno, M., P. T. H. M. Heuvelmans, M. J. F. van Giezen, B. C. Lokman, R. J. Leer, and P. H. Pouwels. 1991 Complimentation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus Appl. Environ. Microbiol. 57 2764–2766PubMedGoogle Scholar
  688. Potera, C. 1997 Genencor & DuPont create “green” polyester Genet. Eng. News 17 17Google Scholar
  689. Prescott, S. C., and C. G. Dunn. 1949 The acetone-butanol fermentation Industrial Microbiology, 2nd ed McGraw-Hill New York NY 312–351Google Scholar
  690. Prescott, S. C., and C. G. Dunn. 1949 The acetone-butanol fermentation Industrial Microbiology, 2nd ed McGraw-Hill New York NY 477–486Google Scholar
  691. Prescott, S. C., and C. G. Dunn. 1959a The acetone-butanol fermentation In: Industrial Microbiology, 3rd ed McGraw-Hill New York NY 250–284Google Scholar
  692. Prescott, S. C., and C. G. Dunn. 1959b The acetone-ethanol fermentation In: Industrial Microbiology, 3rd ed McGraw-Hill New York NY 295–298Google Scholar
  693. Prescott, S. C., and C. G. Dunn. 1959c The butanol-isopropanol fermentation Industrial Microbiology, 3rd ed McGraw-Hill New York NY 285–294Google Scholar
  694. Pries, A., A. Steinbüchel, and H. G. Schlegel. 1990 Lactose-utilizing and galactose-utilizing strains of poly(hydroxyalkanoic acid)-accumulating Alcaligenes eutrophus and Pseudomonas saccharophila obtained by recombinant DNA technology Appl. Microbiol. Biotechnol. 33 410–417CrossRefGoogle Scholar
  695. Prieto, M. A., B. Buhler, K. Jung, B. Witholt, and B. Kessler. 1999a PhaE, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes J. Bacteriol. 181 858–868PubMedGoogle Scholar
  696. Prieto, M. A., M. B. Kellerhals, G. B. Bozzato, D. Radnovic, B. Witholt, and B. Kessler. 1999b Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates Appl. Environ. Microbiol. 65 3265–3271PubMedGoogle Scholar
  697. Pronk, J. T., P. R. Levering, W. Olijve, and J. P. Van Dijken. 1989 The role of NADP-dependent and quino protein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans Enz. Microb. Technol. 11 160–164CrossRefGoogle Scholar
  698. Quesada-Chanto, A., A. S. Afschar, and F. Wagner. 1994a Microbial production of propionic acid and vitamin B-12 using molasses or sugar Appl. Microbiol. Biotechnol. 41 378–383PubMedGoogle Scholar
  699. Quesada-Chanto, A., A. S. Afschar, and F. Wagner. 1994b Optimization of a Propionibacterium acidipropionici continuous culture utilization of sucrose Appl. Microbiol. Biotechnol. 42 16–21CrossRefGoogle Scholar
  700. Quesada-Chanto, A., J. P. C. L. da Costa, M. M. Silveira, A. G. Schroeder, A. C. Schmidt-Meyer, and R. Jona. 1998a Influence of different vitamin-nitrogen sources on cell growth and propionic acid production from sucrose by Propionibacterium shermanii Acta Biotechnologia 18 267–274CrossRefGoogle Scholar
  701. Quesada-Chanto, A., M. M. Silveira, A. C. Schmidt-Meyer, A. G. Schroeder, J. P. C. L. da Costa, J. Lopez, M. F. Carvalho-Jonas, M. J. Artolozaga, and R. Jona. 1998b Effect of oxygen supply on pattern of growth and corrinoid and organic acid production of Propionibacterium shermanii Appl. Microbiol. Biotechnol. 49 732–736CrossRefGoogle Scholar
  702. Qureshi, N., and H. P. Blaschek. 2001a ABE production from corn: A recent economic evaluation J. Indust. Microbiol. Biotechnol. 27 292–297CrossRefGoogle Scholar
  703. Qureshi, N., A. Lolas, and H. P. Blaschek. 2001b Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101 J. Indust. Microbiol. Biotechnol. 26 290–295CrossRefGoogle Scholar
  704. Ragsdale, S. W. 1994 CO dehydrogenase and the central role of this enzyme in fixation of carbon-dioxide by anaerobic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York NY 88–126CrossRefGoogle Scholar
  705. Ragsdale, S. W., and C. G. Riordan. 1996 The role of nickel in acetyl-CoA synthesis by the bifunctional enzyme CO dehydrogenase/acetyl-CoA synthase: Enzymology and model chemistry J. Biol. Inorg. Chem. 1 489–493CrossRefGoogle Scholar
  706. Rakhley, G., Z. H. Zhou, M. W. W. Adams, and K. L. Kovacs. 1999 Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis Eur. J. Biochem. 266 1158–1165CrossRefGoogle Scholar
  707. Ramachandran, K. B., and G. Goma. 1988 2,3-Butanediol production from glucose by Klebsiella pneumoniae in a cell recycle system J. Biotechnol. 9 39–46CrossRefGoogle Scholar
  708. Rani, K. S., and G. Seenayya. 1999 High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22 World J. Microbiol. Biotechnol. 15 173–178CrossRefGoogle Scholar
  709. Rao, G., and R. Mutharasan. 1986 Alcohol production by Clostridium acetobutylicum induced by methyl viologen Biotechnol. Lett. 8 893–896CrossRefGoogle Scholar
  710. Rao, G., and R. Mutharasan. 1987 Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes Appl. Environ. Microbiol. 53 1232–1235PubMedGoogle Scholar
  711. Rao, G., and R. Mutharasan. 1988 Altered electron flow in a reduced environment in Clostridium acetobutylicum Biotechnol. Lett. 10 129–132CrossRefGoogle Scholar
  712. Raspoet, D., B. Pot, D. De Deyn, P. De Vos, K. Kersters, and J. De Ley. 1991 Differentiation between 2,3-butanediol producing Bacillus licheniformis and B. polymyxa strains by fermentation product profiles and whole-cell protein electrophoretic patterns Syst. Appl. Microbiol. 14 1–7CrossRefGoogle Scholar
  713. Ravagnani, A., K. C. B. Jennert, E. Steiner, R. Grunberg, J. R. Jefferies, S. R. Wilkinson, D. I. Young, E. C. Tidswell, D. P. Brown, P. Youngman, J. G. Morris, and M. Young. 2000 Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia Molec. Microbiol. 37 1172–1185CrossRefGoogle Scholar
  714. Rayner, A. 1926 The occurrence, properties, and uses of trimethylene glycol, and the fermentation of glycerin lyes J. Soc. Chem. Indust. 45 265T–266TGoogle Scholar
  715. Reed, G. 1982 Production of fermentation alcohol as a fuel source In: G. Reed (Ed.) Prescott & Dunn's Industrial Microbiology, 4th ed AVI Publishing Westport CT 835–859Google Scholar
  716. Rehberger, J. L., and B. A. Glatz. 1998 Response of cultures of Propionibacterium to acid and low pH tolerance and inhibition J. Food Protect. 61 211–216Google Scholar
  717. Rehm, B. H. A., N. Kruger, and A. Steinbüchel. 1998 A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis J. Biol. Chem. 237 24044–24051CrossRefGoogle Scholar
  718. Rehr, B., C. Wilhelm, and H. Sahm. 1991 The production of sorbitol and gluconic acid by permeablized cells of Zymomonas mobilis Appl. Microbiol. Biotechnol. 35 144–148CrossRefGoogle Scholar
  719. Reid, S. J., E. R. Allcock, D. T. Jones, and D. R. Woods. 1983 Transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA Appl. Environ. Microbiol. 45 305–307PubMedGoogle Scholar
  720. Reid, M. F., and C. A. Fewson. 1994 Molecular characterization of microbial alcohol dehydrogenases Crit. Rev. Microbiol. 20 13–56PubMedCrossRefGoogle Scholar
  721. Reimann, A., and H. Biebl. 1996 Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture: Feeding strategy for glycerol and ammonium Biotechnol. Lett. 18 827–832CrossRefGoogle Scholar
  722. Reimann, A., S. Abbad-Andaloussi, H. Biebl, and H. Petitdemange. 1998a 1,3-propanediol formation with product-tolerant mutants of Clostridium butyricum DSM 5431 in continuous culture: Productivity, carbon and electron flow J. Appl. Microbiol. 84 1125–1130CrossRefGoogle Scholar
  723. Reimann, A., H. Biebl, and W. D. Deckwer. 1998b Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling Appl. Microbiol. Biotechnol. 49 359–363CrossRefGoogle Scholar
  724. Reisch, M. S. 1999 Vision 2020 comes into focus Chem. Eng. News 77(32) 10–12Google Scholar
  725. Ren, Q., N. Sierro, M. Kellerhals, B. Kessler, and B. Witholt. 2000 Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Esherichia coli strains Appl. Environ. Microbiol. 66 1311–1320PubMedCrossRefGoogle Scholar
  726. Reusch, R. N., and H. L. Sadoff. 1988 Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes Proc. Natl. Acad. Sci. USA 85 4176–4180PubMedCrossRefGoogle Scholar
  727. Reusch, R. N. 1992a Biological complexes of poly-β-hydroxybutyrate FEMS Microbiol. Rev. 103 119–130Google Scholar
  728. Reusch, R. N., and A. Sparrow. 1992b Transport of poly-β-hydroxybutyrate in human plasma Biochim. Biophys. Acta 1123 33–40PubMedCrossRefGoogle Scholar
  729. Reynen, M., and H. Sahm. 1988 Comparison of the structural genes for pyruvate decarboxylase in different Zymomonas mobilis strains J. Bacteriol. 170 3310–3313PubMedGoogle Scholar
  730. Reysset, G., and M. Sebald. 1985 Conjugal transfer of plasmid-mediated antibiotic resistance from streptococci to Clostridium acetobutylicum Ann. Inst. Pasteur/Microbiol. 136B 275–282CrossRefGoogle Scholar
  731. Reysset, G., and M. Sebald. 1993 Transformation/electrotransformation of clostridia In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann London 151–158Google Scholar
  732. Rickert, D. A., C. E. Glatz, and B. A. Glatz. 1998 Improved organic acid production by calcium alginate-immobilized propionibacteria Enzyme Microb. Technol. 22 409–414CrossRefGoogle Scholar
  733. Ro, H. S., and H. S. Kim. 1991 Continuous production of gluconic acid and sorbitol from sucrose using invertase and an oxidoreductase from Zymomonas mobilis Enz. Microb. Technol. 13 920–924CrossRefGoogle Scholar
  734. Roehr, M., C. P. Kubicek, and J. Kominek. 1996 Gluconic acid In: M. Roehr (Ed.) Biotechnology, 2nd ed VCH New York NY 348–362Google Scholar
  735. Rogers, P. L., K. J. Lee, M. L. Skotnicki, and D. E. Tribe. 1982 Ethanol production by Zymomonas mobilis Adv. Biochem. Engin. 23 37–84Google Scholar
  736. Rogers, P. 1986 Genetics and biochemistry of Clostridium relevant to development of fermentation processes Adv. Appl. Microbiol. 31 1–60CrossRefGoogle Scholar
  737. Rogers, P., and N. Palosaari. 1987 Clostridium acetobutylicum mutants that produce butyraldehyde and altered quantities of solvents Appl. Environ. Microbiol. 53 2761–2766PubMedGoogle Scholar
  738. Rogers, P. L., K. J. Lee, G. M. Smith, and K. D. Barrow. 1989 Ethanol tolerance of Zymomonas mobilis In: N. van Uden (Ed.) Alcohol Toxicity in Yeasts and Bacteria CRC Press Boca Raton FL 239–256Google Scholar
  739. Rogers, P., and G. Gottschalk. 1993 Biochemistry and regulation of acid and solvent production in clostridia In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann Stoneham MA 25–50Google Scholar
  740. Rogers, P. 1999 Clostridia: Solvent formation In: M. C. Flickinger and S. W. Drew (Eds.) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation John Wiley New York NY 2 670–687Google Scholar
  741. Roos, J. W., J. K. McLaughlin, and E. T. Papoutsakis. 1985 The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum Biotechnol. Bioengin. 27 681–694CrossRefGoogle Scholar
  742. Rose, N. 1986 Chaim Weizmann Penguin Books New York NYGoogle Scholar
  743. Rosenberg, S. L. 1980 Fermentation of pentose sugars to ethanol and other neutral products by microorganisms Enz. Microb. Technol. 2 185–193CrossRefGoogle Scholar
  744. Ross, D. 1961 The acetone-butanol fermentation Progr. Indust. Microbiol. 3 71–90Google Scholar
  745. Rudolph, F. B., D. L. Purich, and H. J. Fromm. 1968 Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I: Partial purification, properties, and kinetic studies of the enzyme J. Biol. Chem. 243 5539–5545PubMedGoogle Scholar
  746. Ryden, R. 1958 Development of anaerobic fermentation processes: Acetone-butanol In: R. Steel (Ed.) Biochemical Engineering Macmillan New York NY 125–148Google Scholar
  747. Sablayrolles, J. M., and G. Goma. 1984 Butanediol production by Aerobacter aerogenes NRRL B199: Effects of initial substrate concentration and aeration agitation Biotechnol. Bioengin. 26 148–155CrossRefGoogle Scholar
  748. Saeki, A., M. Taniguchi, K. Matsushita, H. Yoyama, G. Theeragol, N. Lotong, and O. Adachi. 1997a Microbial aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation Biosci. Biotech. Biochem. 61 317–323CrossRefGoogle Scholar
  749. Saeki, A., G. Theeragol, and K. Matsushita. 1997b Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at high temperatures Biosci. Biotech. Biochem. 61 138–145CrossRefGoogle Scholar
  750. Saha, B. C., and R. J. Bothast. 1999 Production of 2,3-butanediol by newly isolated Enterobacter cloacae Appl. Microbiol. Biotechnol. 52 321–326PubMedCrossRefGoogle Scholar
  751. Saint-Amans, S., P. Perlot, G. Goma, and P. Soucaille. 1994 High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system Biotechnol. Lett. 16 831–836CrossRefGoogle Scholar
  752. Saint-Amans, S., L. Girbal, J. Andrade, K. Ahrens, and P. Soucaille. 2001 Regulation of carbon and electron flow in Clostridium butyricum VP 13266g grown on glucose-glycerol mixtures J. Bacteriol. 183 1748–1754PubMedCrossRefGoogle Scholar
  753. Sakura, H., H. W. Lee, S. Sato, S. Mukataka, and J. Takahashi. 1989 Gluconic acid production by Aspergillus niger immobilized on nonwoven fabric J. Ferment. Bioeng. 67 404–408CrossRefGoogle Scholar
  754. Samuelov, N. S., R. Lamed, S. Lowe, and J. G. Zeikus. 1991 Influence of CO2-HCO3-levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens Appl. Environ. Microbiol. 57 3013–3019PubMedGoogle Scholar
  755. Samuelov, N. S., R. Datta, M. K. Jain, and J. G. Zeikus. 1999 Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive Appl. Env. Microbiol. 65 2260–2263Google Scholar
  756. Sanchez-Riera, F., D. C. Cameron, and C. L. Cooney. 1987 Influence of environmental factors in the production of R(-)-1,2-propanediol by Clostridium thermosaccharolyticum Biotechnol. Lett. 9 449–454CrossRefGoogle Scholar
  757. Sass, C., J. Walter, and G. N. Bennett. 1993 Isolation of mutants of Clostridium acetobutylicum ATCC 824 Curr. Microbiol. 26 151–154CrossRefGoogle Scholar
  758. Sauer, E. T. 1991 Carboxylic acids (economic aspects) In: Encyclopedia of Chemical Technology, 4th ed John Wiley New York NY 5 179–187Google Scholar
  759. Sauer, U., and P. Dürre. 1995 Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum FEMS Microbiol. Lett. 125 115–120CrossRefGoogle Scholar
  760. Sauer, U., J. D. Santangelo, A. Trever, M. Bucholz, and P. Dürre. 1995 Sigma factor and sporulation genes in Clostridium FEMS Microbiol. Rev. 17 331–340PubMedCrossRefGoogle Scholar
  761. Scheirlinck, T., J. Mahillon, H. Joos, P. Dahaese, and F. Michiels. 1989 Integration and expression of α? amylase and endoglucanase genes in the Lactobacillus plantarum chromosome Appl. Environ. Microbiol. 55 2130–2137PubMedGoogle Scholar
  762. Schilling, L. B. 1995 Chemicals from alternative feedstocks in the United States FEMS Microbiol. Rev. 16 101–110CrossRefGoogle Scholar
  763. Schlegel, H. G., G. Gottschalk, and R. Von Vartha. 1961 Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas) Nature 191 463–465PubMedCrossRefGoogle Scholar
  764. Schneider, Z., E. G. Larsen, G. Jacobson, B. C. Johnson, and J. Pawelkiewicz. 1970 Purification and properties of glycerol dehydrase J. Biol. Chem. 245 3388–3396PubMedGoogle Scholar
  765. Schoutens, G. H., M. C. H. Nieuwenhuizen, and N. W. F. Kossen. 1984 Butanol from whey ultrafiltrate: Batch experiments with Clostridium beyerinckii LMD 27.6 Appl. Microbiol. Biotechnol. 19 203–206CrossRefGoogle Scholar
  766. Schoutens, G. H., and W. J. Groot. 1985a Economic feasibility of the production of iso-propanol-butanol-ethanol fuels from whey permeate Process Biochem. 20 117–121Google Scholar
  767. Schoutens, G. H., M. C. H. Nieuwenhuizen, and N. W. F. Kossen. 1985b Continuous butanol production from whey permeate with immobilized Clostridium beyerinckii LMD 27.6 Appl. Microbiol. Biotechnol. 21 282–286CrossRefGoogle Scholar
  768. Schubert, P., A. Steinbüchel, and H. G. Schlegel. 1988 Cloning of the Alcaligenes eutrophus gene for synthesis of poly-β-hydroxybutyric acid and synthesis of PHB in Escherichia coli J. Bacteriol. 170 5837–5847PubMedGoogle Scholar
  769. Schuster, K. C., R. Goodacre, J. R. Gapes, and M. Young. 2001 Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells J. Ind. Microbiol. Biotechnol. 27 314–321PubMedCrossRefGoogle Scholar
  770. Scopes, R. K. 1983 An iron-activated alcohol dehydrogenase FEBS Lett. 156 303–306PubMedCrossRefGoogle Scholar
  771. Seifert, C., S. Bowien, G. Gottschalk, and R. Daniel. 2001 Identification and expression of the genes and purification nd characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii Eur. J. Biochem. 268 2369–2378PubMedCrossRefGoogle Scholar
  772. Senthuran, A., V. Senthuran, B. Mathasson, and R. Kaul. 1997 Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei Biotechnol. Bioeng. 55 841–853PubMedCrossRefGoogle Scholar
  773. Seyfried, M., R. Daniel, and G. Gottschalk. 1996 Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii J. Bacteriol. 178 5793–5796PubMedGoogle Scholar
  774. Shah, M. M., and M. Cheryan. 1995a Acetate production by Clostridium thermoaceticum in corn steep liquor media J. Ind. Microbiol. 15 424–428CrossRefGoogle Scholar
  775. Shah, M. M., and M. Cheryan. 1995b Improvement of productivity in acetic acid fermentation with Clostridium thermoaceticum Appl. Biochem. Biotechnol. 51/52 418–422CrossRefGoogle Scholar
  776. Sheehan, J. 2000 The road to bioethanol: A strategic perspective of the U.S. Department of Energy's national ethanol program In: H. M. E., J. O. Baker, and J. N. Saddler (Ed.) Glycosyl Hydrolases for Biomass Conversion American Chemical Society Washington DC ACS Symposium Series 769 2–25CrossRefGoogle Scholar
  777. Shelley, S., and R. L. D'Aquino. 1999 Three routes vie for the 1,3-propanediol market Chem. Engin. 106 56Google Scholar
  778. Shen, G. J., B. A. Annons, R. W. Lovitt, M. K. Jain, and J. G. Zeikus. 1996 Biochemical route and control if butyrate synthesis in Butyribacterium methylotropicum Appl. Microbiol. Biotechnol. 45 355–362CrossRefGoogle Scholar
  779. Sherman, J. M., and R. H. Shaw. 1923 Process for the production of propionates and propionic acid. US Patent 1,470,885 Chem Abstr. 18 146Google Scholar
  780. Shiraishi, F., K. Kawakami, S. Kono, and A. Tamura. 1989a Continous production of free gluconic acid by Gluconobacter suboxydans IFO 3290 immobilized by adsorption on ceramic honeycomb monolith: Effect of reactor configuration on further oxidation of gluconic acid to ketogluconic acid Appl. Microbiol. Biotechnol. 31 445–447CrossRefGoogle Scholar
  781. Shiraishi, F., K. Kawakami, S. Kono, A. Tamura, S. Tsuruta, and K. Kosmoki. 1989b Characterization of production of free gluconic acid by Gluconobacter suboxydans absorbed on ceramic honeycomb monolith Biotechnol. Bioeng. 33 1413–1418PubMedCrossRefGoogle Scholar
  782. Shoham, Y., R. Lamed, and E. A. Bayer. 1999 The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides Trends Microbiol. 7 275–281PubMedCrossRefGoogle Scholar
  783. Shone, C. C., and H. J. Fromm. 1981 Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli Biochemistry 20 7494–7501PubMedCrossRefGoogle Scholar
  784. Sievers, M., S. Sellmer, and M. Teuber. 1992 Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe Syst. Appl. Microbiol. 15 386–392CrossRefGoogle Scholar
  785. Sievers, M., W. Ludwig, and M. Teuber. 1994a Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodophila, and Acidiphilium species as a branch of acidophilic bacteria in the α-subclass of proteobacteria based on 16S ribosomal DNA sequences Syst. Appl. Microbiol. 17 189–196CrossRefGoogle Scholar
  786. Sievers, M., W. Ludwig, and M. Teuber. 1994b Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodophila and Acidiphilium species as a branch of acidophilic bacteria in the α subclass of Proteobacteria based on 16S RNA sequences Syst. Appl. Microbiol. 17 352–354CrossRefGoogle Scholar
  787. Sievers, M., W. Ludwig, and M. Teuber. 1994c Revival of the species Acetobacter methanolicus (ex: Uhlig et al., 1986) nom. rev Syst. Appl. Microbiol. 17 352–354CrossRefGoogle Scholar
  788. Silva-Martinez, M., D. Haltrich, S. Novalic, K. D. Kobe, and B. Nidetzky. 1998 Simultaneous enzymatic syntheses of gluconic acid and sorbitol Appl. Biochem. Biotechnol. 70–72 863–875PubMedCrossRefGoogle Scholar
  789. Silveira, M. M., E. Wisbeck, and C. Lemmel. 1999 Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis J. Biotechnol. 75 99–103PubMedCrossRefGoogle Scholar
  790. Silveira, M. M., E. Wisbeck, I. Hoch, and R. Jonas. 2001 Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins Appl. Microbiol. Biotechnol. 55 442–445PubMedCrossRefGoogle Scholar
  791. Sinskey, A. J., M. Akedo, and C. L. Cooney. 1981 Acrylate fermentations In: A. Hollaender (Ed.) Trends in the Biology of Fermentations Plenum Press New York NY 473–492CrossRefGoogle Scholar
  792. Skraly, F. A., B. L. Lytle, and D. C. Cameron. 1998 Construction and characterization of a 1,3-propanediol operon Appl. Env. Microbiol. 64 98–105Google Scholar
  793. Slapack, G. E., I. Russell, and G. G. Stewart. 1987 Thermophilic Microbes in Ethanol Production CRC Press Boca Raton FLGoogle Scholar
  794. Slater, S., K. L. Houmiel, M. Tran, T. A. Mitsky, N. B. Taylor, S. R. Padgette, and K. J. Gruys. 1998 Multiple β-ketothiolase mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha J. Bacteriol. 180 1979–1987PubMedGoogle Scholar
  795. Slater, S., T. A. Mitsky, K. L. Houmiel, M. Hao, S. E. Reiser, N. B. Taylor, M. Tran, H. E. Valentin, J. Rodriguez, D. A. Stone, S. R. Padgette, G. Kishore, and K. J. Gruys. 1999 Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production Nature Biotechnol. 17 1011–1016CrossRefGoogle Scholar
  796. Smith, W. P. 1993 Soap/Cosmetic Specialties 9 54–58Google Scholar
  797. Société Lefranc et Cie. 1925 An improved process for the manufacture of dipropylketone. British Patent 216-120 Chem. Abstr. 19 77Google Scholar
  798. Sokollek, S. J., and W. P. Hammes. 1997 Description of a starter culture preparation for vinegar fermentation Syst. Appl. Microbiol. 20 481–491CrossRefGoogle Scholar
  799. Sokollek, S. J., C. Hertel, and W. P. Hammes. 1998 Cultivation and preservation of vinegar bacteria J. Biotechnol. 60 195–206CrossRefGoogle Scholar
  800. Solichien, M. S., D. O'Brien, E. G. Hammond, and C. E. Glatz. 1995 Membrane-based extractive fermentation to produce propionic and acetic acids: toxicity and mass transfer considerations Enzyme Microb. Technol. 17 23–31CrossRefGoogle Scholar
  801. Solomon, B. O., A. P. Zeng, H. Biebl, A. O. Ejiofor, C. Posten, and W. D. Deckwer. 1994 Effects of substrate limitation on product distribution and H2/CO2 ratio in Klebsiella pneumoniae during anaerobic fermentation of glycerol Appl. Microbiol. Biotechnol. 42 222–226Google Scholar
  802. Solomon, B. O., A.-P. Zeng, H. Biebl, H. Schlieker, C. Posten, W.-D. Deckwer. 1995 Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol J. Biotechnol. 39 107–117PubMedCrossRefGoogle Scholar
  803. Solomons, G. L. 1976 Solvents from carbohydrates: Some economic considerations Process Biochem. 11 32–37Google Scholar
  804. Somrutai, W., M. Takagi, and T. Yoshida. 1996 Acetone-butanol fermentation by Clostridium aurantibutyricum ATCC 17777 from a model medium for palm oil mill effluent J. Ferment. Bioengin. 81 543–547CrossRefGoogle Scholar
  805. Spivey, M. J. 1978 The acetone/butanol/ethanol fermentation Process Biochem. 13 2–25Google Scholar
  806. Sprenger, G. A., B. A. Hammer, E. A. Johnson, and E. C. Lin. 1989 Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae J. Gen. Microbiol. 135 1255–1262PubMedGoogle Scholar
  807. Stackebrandt, E., and B. M. Goebel. 1994 Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology Int. J. Syst. Bacteriol. 44 846–849CrossRefGoogle Scholar
  808. Steinbüchel, A. 1991 Polyhydroxyalkanoic acids In: D. Byrom (Ed.) Biomaterials: Novel Materials from Biological Sources MacmillanGoogle Scholar
  809. Steinbüchel, A., and G. Schmack. 1995 Large-scale production of poly(3-hydroxyvaleric acid) by fermentation of Chromobacterium violaceleum, processing, and characterization of the homopolyester J. Environ. Polym. Degrad. 3 243–258CrossRefGoogle Scholar
  810. Steinbüchel, A. 1996 PHB and other polyhydroxyalkanoic acids In: M. Roehr (Ed.) Biotechnology, 2nd edn VCH Weinheim Germany 6 403–464CrossRefGoogle Scholar
  811. Steinbüchel, A., and V. Gorenflo. 1997 Biosynthetic and biodegradable polyesters from renewable resources: Current state and prospects Macromol. Symp. 123 61–66CrossRefGoogle Scholar
  812. Steinbüchel, A., and B. Füchtenbusch. 1998 Bacterial and other biological systems for polyester production Trends Biotechnol. 16 419–427PubMedCrossRefGoogle Scholar
  813. Stephens, G. M., R. A. Holt, J. C. Gottschal, and J. G. Morris. 1985 Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture J. Appl. Bacteriol. 59 597–605Google Scholar
  814. Stevens, D., S. Alam, and R. Bajpai. 1988 Fermentation of cheese whey by a mixed culture of Clostridium beijerinckii and Bacillus cereus J. Ind. Microbiol. 3 15–19CrossRefGoogle Scholar
  815. Stieb, M., and B. Schink. 1984 A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov.sp.nov., possessing various fermentation pathways Arch Microbiol. 140 139–146CrossRefGoogle Scholar
  816. Stim-Herndon, K. P., D. J. Petersen, and G. N. Bennett. 1995 Molecular characterization of the acetyl coenzyme A acetyltransferase (thiolase) from Clostridium acetobutylicum ATCC 824 Gene 154 81–85PubMedCrossRefGoogle Scholar
  817. St. Martin, E. J., W. B. Freedberg, and E. C. C. Lin. 1977 Kinase replaceent by a dehydrogenase for Escherichia coli glycerol utilization J. Bacteriol. 131 1026–1028PubMedGoogle Scholar
  818. Stols, L., and M. I. Donnelly. 1997a Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant Appl. Env. Microbiol. 63 2695–2701Google Scholar
  819. Stols, L., G. Kulkarni, B. G. Harris, and M. I. Donnelly. 1997b Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose Appl. Biochem. Biotechnol. 63–65 153–158PubMedCrossRefGoogle Scholar
  820. Stormer, F. C. 1975 2,3-Butanediol biosynthetic system in Aerobacter aerogenes In W. A. Wood (Eds.) Methods in Enzymology Academic Press New York NY 41 518–533Google Scholar
  821. Strecker, A. 1854 Über eine eigentümliche Bildungsweise der Propionsaüre und einige Salze derselben Ann. Chem. 92 80CrossRefGoogle Scholar
  822. Streekstra, H., M. J. Teixera de Mattos, O. M. Neijssel, and D. W. Tempest. 1987 Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture Arch. Microbiol. 147 268–275CrossRefGoogle Scholar
  823. Suzuki, T., and H. Onishi. 1968 Aerobic dissimilation of L-rhamnose and the production of L-rhamnonic acid and 1,2-propanediol by yeasts Agric. Biol. Chem. 32 888–893CrossRefGoogle Scholar
  824. Suzuki, T., T. Yamane, and S. Shimizu. 1986 Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding Appl. Microbiol. Biotechnol. 24 370–374CrossRefGoogle Scholar
  825. Swick, R. W., and H. G. Wood. 1960 The role of transcarboxylation in propionic acid fermentation Proc. Natl. Acad. Sci. USA 46 28–41PubMedCrossRefGoogle Scholar
  826. Swings, J., and J. De Ley. 1977 The biology of Zymomonas Bacteriol. Rev. 41 1–46PubMedGoogle Scholar
  827. Swings, J., and J. De Ley. 1984 Genus Zymomonas In: N. R. Krieg and J. G. Holt (Ed.) [{http://www.cme.msu.edu/bergeys}Bergey's Manual of Systematic Bacteriology] Williams and Wilkins Baltimore MD 1 576–580Google Scholar
  828. Swings, J. 1992 The genera Acetobacter and Gluconobacter In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) [{http://www.prokaryotes.com} The Prokaryotes] Springer-Verlag New York NY 3 2268–2286Google Scholar
  829. Syu, M. J. 2001 Biological production of 2,3-butanediol Appl. Microbiol. Biotechnol. 55 10–18PubMedCrossRefGoogle Scholar
  830. Szmant, H. H. 1989 Organic Building Blocks of the Chemical Industry John Wiley New York NY 347–348Google Scholar
  831. Taguchi, H., and T. Ohata. 1991 D-Lactate dehydrogenase is a member of the D-isomer-specific 2-hydrox acid dehydrogenase family J. Biol. Chem. 266 12588–12594PubMedGoogle Scholar
  832. Takahashi, R., N. Fujimoto, M. Suzuki, and T. Endo. 1997 Biodegradabilities of ethylenediamine-N,N′-disuccinic acid (EDDS) and other chelating agents Biosci. Biotech. Biochem. 61 1957–1959CrossRefGoogle Scholar
  833. Takemura, H., S. Horinouchi, and T. Beppu. 1991 Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability J. Bacteriol. 173 7070–7076PubMedGoogle Scholar
  834. Takiyama, E., and T. Fujimaki. 1994 “BIONELLE” biodegradable plastic through chemical synthesis In: Y. Doi and K. Fukuda (Eds.) Biodegradable Plastics and Polymers Elsevier Science Amsterdam The Netherlands 150–174Google Scholar
  835. Tanaka, K., A. Ishizaki, T. Kanamaru, and T. Kawano. 1995 Production of poly(D-3-hydroxybutyrate) from C02, H2, and O2 by high cell-density autotrophic cultivation of Alcaligenes eutrophus Biotechnol. Bioeng. 45 268–275PubMedCrossRefGoogle Scholar
  836. Tang, J. C. T., F. E. Ruch, and E. C. C. Lin. 1979 Purification and properties of a nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glyerol catabolism J. Bacteriol. 140 182–187PubMedGoogle Scholar
  837. Tang, J. C. T., R. G. Forage, and E. C. C. Lin. 1982 Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae J. Bacteriol. 152 1169–1174PubMedGoogle Scholar
  838. Tanner, R. S., L. M. Miller, and D. Yang. 1993 Clostrium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I Int. J. Syst. Bacteriol. 43 232–236PubMedCrossRefGoogle Scholar
  839. Taroncher-Oldenburg, G., K. Nishia, and G. Stephanopoulos. 2000 Identification and analysis of polyhydroxyalkanoate-specific β-ketothiolase and acetoacetyl coenzyme A reductase genes in cyanobacterium Synechocystis sp. strain PCC6803 Appl. Environ. Microbiol. 66 4440–4448PubMedCrossRefGoogle Scholar
  840. Taylor, M. B., and E. Juni. 1960 Stereoisomeric specificities of 2,3-butanediol dehydrogenases Biochim. Biophys. Acta 39 448–457PubMedCrossRefGoogle Scholar
  841. Terracciano, J. S., and E. R. Kashket. 1986 Intracellular conditions required of initiation of solvent production by Clostridium acetobutylicum Appl. Environ. Microbiol. 52 86–91PubMedGoogle Scholar
  842. Thauer, R. K., K. Jungerman, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180PubMedGoogle Scholar
  843. Thauer, R. K. 1989 Biochemistry of acetic acid metabolism in anaerobic chemotropic bacteria Ann. Rev. Microbiol. 43 43–67CrossRefGoogle Scholar
  844. Thayer, A. 2000 Challenges of a biobased economy C & EN May 29 40Google Scholar
  845. Thomas, S. R., W. S. Adney, J. O. Baker, Y.-C. Chou, and M. E. Himmel. 1997 US Patent 5,712,142Google Scholar
  846. Thompson, D. K., and J.-S. Chen. 1990 Purification and properties of an acetoacetyl coenzyme A-reacting phosphotransbutyrylase from Clostridium beijerinckii (“Clostridium butylicum”) NRRL B593 Appl. Environ. Microbiol. 56 607–613PubMedGoogle Scholar
  847. Thomson, A. W., J. G. O'Neill, and J. F. Wilkinson. 1976 Acetone production by methlobacteria Arch. Microbiol. 109 243–246PubMedCrossRefGoogle Scholar
  848. Thormann, K., L. Feustel, K. Lorenz, S. Nakotte, and P. Dü. 2002 Control of butanol formation in Clostridium acetobutylicum by transcriptional activation J. Bacteriol. 184 1966–1973PubMedCrossRefGoogle Scholar
  849. Tobimatsu, T., T. Hara, M. Sakaguchi, Y. Kishimoto, Y. Wada, M. Isoda, T. Sakai, and T. Toraya. 1995 Molecular cloning, sequencing, and expression of the genes encoding adenosylcobalamin-dependent diol dehydrase of Klebsiella oxytoca J. Biol. Chem. 270 712–7148Google Scholar
  850. Tobimatsu, T., M. Azuma, H. Matsubara, H. Takatori, T. Niida, K. Nishinoto, H. Satoh, R. Hayashi, and T. Toraya. 1996 Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae J. Biol. Chem. 271 22352–22357PubMedCrossRefGoogle Scholar
  851. Tobimatsu, T., H. Kjiura, M. Yunoki, M. Azuma, and T. Toraya. 1999 Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase J. Bacteriol. 181 4110–4113PubMedGoogle Scholar
  852. Toda, K., Y. S. Park, T. Asakura, C. Y. Cheng, and H. Ohtake. 1989 High rate acetic acid production in a shallow flow bioreacter Appl. Microbiol. Biotechnol. 30 559–563CrossRefGoogle Scholar
  853. Tolan, J. S., and R. K. Finn. 1987a Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi Appl. Environ. Microbiol. 53 2033–2044PubMedGoogle Scholar
  854. Tong, I.-T., H. H. Liao, and D. C. Cameron. 1991 1,3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon Appl. Env. Microbiol. 57 3541–3546Google Scholar
  855. Tong, I. T., and D. C. Cameron. 1992 Enhancement of 1,3-Propanediol Production by Cofermentation in Escherichia coli expression Klebsiella pneumoniae dha regulon genes Appl. Biochem. Biotechnol. 34/35 149–159CrossRefGoogle Scholar
  856. Toth, J., A. A. Ismaiel, and J.-S. Chen. 1999 Purification of a coenzyme A-acylating aldehyde dehydrogenase and cloning of the structural gene from Clostridium beijerinckii NRRL B593 Appl. Environ. Microbiol. 65 4973–4980PubMedGoogle Scholar
  857. Traeger, M., G. N. Qazi, N. Gulan, R. Buse, and V. Onken. 1992 Comparison of direct glucose oxidation by Gluconobacter oxydans ssp. suboxydans and Aspergillus niger in a pilot scale airlift reactor J. Ferment. Bioeng. 74 274–281CrossRefGoogle Scholar
  858. Tran-Din, K., and G. Gottschalk. 1985 Formation of D(−)-1,2-propanediol and D(−)-lactate from glucose by Clostridium sphenoides under phosphate limitation Arch. Microbiol. 142 87–92CrossRefGoogle Scholar
  859. Truffaut, N., J. Hubert, and G. Reysset. 1989 Construction of shuttle vectors useful for transforming Clostridium acetobutylicum FEMS Microbiol. Lett. 58 15–20CrossRefGoogle Scholar
  860. Trunger, V., and W. Boos. 1994 Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydratase J. Bacteriol. 176 1796–1800Google Scholar
  861. Tsai, S. P., and S.-H. Moon. 1998 An integrated bioconversion process for the production of L-lactic acid from starchy potato feed stocks Appl. Biochem. Biotechnol. 70–72 417–428PubMedCrossRefGoogle Scholar
  862. Tsao, G. T., N. J. Cao, J. Du, and C. S. Gong. 1999 Production of mutifunctional organic acids from renewable resources Adv. Biochem. Eng. Biotechnol. 65 243–280PubMedGoogle Scholar
  863. Tullo, A. 1999 BDO market embraces new technologies Chemical Market Reporter April 26Google Scholar
  864. Tummala, S. B., N. E. Welker, and E. T. Papoutsakis. 1999 Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824 Appl. Environ. Microbiol. 65 3793–3799PubMedGoogle Scholar
  865. Turk, R. 1993 Metal free and low metal salt substitutes containing lysine US Patent 5229161Google Scholar
  866. Turner, K. W., and A. M. Roberton. 1979 Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola Appl. Environ. Microbiol. 38 7–12PubMedGoogle Scholar
  867. Uchida, K. 1974 Lipids of alcoholophilic lactobacilli. II: Occurrence of polar lipids with unusually long acyl chains in Lactobacillus heterochiochii Biochim. Biophys. Acta 369 146–155PubMedCrossRefGoogle Scholar
  868. Uchida, K. 1975a Alteration of the unsaturated to saturated ratio of fatty acids in bacterial lipids by alcohols Agric. Biol. Chem. 39 1515–1516CrossRefGoogle Scholar
  869. Uchida, K. 1975b Effects of cultural conditions on the cellular fatty acid composition of Lactobacillus heterohiochii, an alcoholophilic bacterium Agric. Biol. Chem. 39 837–842CrossRefGoogle Scholar
  870. Uhlig, H., K. Kahrbaum, and A. Steudel. 1986 Acetobacter methanolicus sp. nov., an acetophilic facultatively methylotrophic bacterium Int. J. Syst. Bacteriol. 36 317–322CrossRefGoogle Scholar
  871. Ui, S., H. Masuda, and H. Muraki. 1983 Laboratory-scale production of 2,3-butanediol isomers (D(−),L(+), and Meso) by bacterial fermentations J. Ferment. Technol. 61 253–259Google Scholar
  872. Ui, S., T. Masuda, H. Masuda, and H. Muraki. 1986 Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymyxa J. Ferment. Technol. 64 481–486CrossRefGoogle Scholar
  873. Ui, S., M. Odagiri, A. Mimura, H. Kanai, T. Kobayashi, and T. Kudo. 1996 Preparation of a chiral acetoinic compound using transgenic Escherichia coli expressing the 2,3-butandiol dehydrogenase gene J. Ferment. Bioeng. 81 386–389CrossRefGoogle Scholar
  874. Ui, S., Y. Okajima, A. Mimura, H. Kanai, and T. Kudo. 1997 Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol J. Ferment. Bioeng. 84 185–189CrossRefGoogle Scholar
  875. Ui, S., T. Hosaka, K. Watanabe, and A. Mimura. 1998 Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4 J. Ferment. Bioeng. 85 79–83CrossRefGoogle Scholar
  876. Valentin, H. E., T. A. Mitsky, D. A. Mahadeo, M. Tran, and K. J. Gruys. 2000a Application of a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co-3-hydroxybutyrate) accumulation in recombinant Esherichia coli Appl. Environ. Microbiol. 66 5253–5258PubMedCrossRefGoogle Scholar
  877. Valentin, H. E., S. Reiser, and K. J. Gruys. 2000b Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from γ-aminobutyrate and glutamate Biotechnol. Bioeng. 67 291–299PubMedCrossRefGoogle Scholar
  878. Vandak, D., M. Telgarsky, and E. Sturkik. 1995a Influence of growth factor components on butyrate production form sucrose by Clostridum butyricum Folia Microbiol. 40 32–42CrossRefGoogle Scholar
  879. Vandak, D., T. M. Zigova, and E. Sturdik. 1995b Effect of growth supplements and whey pretreatment on butyric acid production by Clostridium butyricum World J. Microbiol. Biotechnol. 11 363CrossRefGoogle Scholar
  880. Vandak, D., J. Zigova, E. Sturdik, and S. Schlosser. 1997 Evaluation of solvent and pH for extractive fermentation of butyric acid Process Biochem. 32 245–251CrossRefGoogle Scholar
  881. Van der Werf, M. J., M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1997 Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z Arch. Microbiol. 167 332–342PubMedCrossRefGoogle Scholar
  882. van der Westhuizen, A., D. T. Jones, and D. R. Woods. 1982 Autolytic activity and butanol tolerance of Clostridium acetobutylicum Appl. Environ. Microbiol. 44 1277–1281Google Scholar
  883. Van Niel, C. B. 1928 The Propionic Acid Bacteria (thesis) Labortorium voor Microbiologie der Techische Hoogeschool Delft, N.V. Uitgeversaak, J. W. Boissevain & Co Haarlem The NetherlandsGoogle Scholar
  884. Varadarajan, S., and D. J. Miller. 1999 Catalytic upgrading of fermentation-derived organic acids Biotechnol. Prog. 15 845–854PubMedCrossRefGoogle Scholar
  885. Vasconcelos, I., L. Girbal, and P. Soucaille. 1994 Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol J. Bacteriol. 176 1443–1450PubMedGoogle Scholar
  886. Vega, J. L., S. Prieto, B. B. Elmore, E. C. Clausen, and J. L. Gaddy. 1989 The biological production of ethanol from synthesis gas Appl. Biochem. Biotechnol. 20/21 781–797CrossRefGoogle Scholar
  887. Verhasselt, P., F. Poncelet, K. Vits, A. van Gool, and J. Vanderleyden. 1989 Cloning and expression of a Clostridium acetobutylicum α-amylase gene in Escherichia coli FEMS Microbiol. Lett. 59 135–140Google Scholar
  888. Verhave, T. H. 1930 Verfahren zur bacteriellen oxydation organisher Verbindugen zwecks Herstellungen von Oxydationsprodukten wie Dioxyacton usw. German Patent 563, 758 Chem. Abstr. 27 1085Google Scholar
  889. Vick Roy, T. B. 1985 Lactic acid In: M. Moo Young (Ed.) Comprehensive Biotechnology Pergamon Press Oxford New York NY 761–776Google Scholar
  890. Voget, C. E., C. F. Mignone, and R. J. Ertola. 1985 Butanol production from apple pomace Biotechnol. Lett. 7 43–46CrossRefGoogle Scholar
  891. Vollbrecht, and El Nawawy. 1980 Restricted oxygen supply and excretion of metabolites Euro. J. Appl. Microbiol. Biotechnol. 9 1–8CrossRefGoogle Scholar
  892. Voloch, M., M. R. Ladisch, V. W. Rodwell, and G. T. Tsao. 1983 Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: A new model Biotechnol. Bioengin. 25 173–183CrossRefGoogle Scholar
  893. Von Freudenreich, E., and O. Jensen. 1906 Über die im Emmentaler Käse stattfindende Propionsauregärung Zentralblatt für Bacteriologie, Parasiten Kunde Infectious Krankheiten und Hygiene Abt. II, 17 529–546Google Scholar
  894. Wagner, T. O., D. S. Gray, B. Y. Zarah, and A. A. Kozinski. 1980 Practicality of alcohols as motor fuel In: Alcohols as Motor Fuels Society of Automotive Engineers Warrendale PA 249–265Google Scholar
  895. Walker, S. A., and T. R. Klaenhammer. 2000 An explosive antisense RNA strategy for inhibition of a lactococcal bacteriophage Appl. Environ. Microbiol. 66 310–319PubMedCrossRefGoogle Scholar
  896. Walter, K. A., G. N. Bennett, and E. T. Papoutsakis. 1992 Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes J. Bacteriol. 174 7149–7158PubMedGoogle Scholar
  897. Walter, K. A., R. V. Nair, J. W. Cary, G. N. Bennett, and E. T. Papoutsakis. 1993 Sequence and arrangement of two genes of the butyrate-synthesis pathway of Clostridium acetobutylicum ATCC 824 Gene 134 107–111PubMedCrossRefGoogle Scholar
  898. Walton, M. T., and J. L. Martin. 1979 Production of butanol-acetone by fermentation In: H. J. Peppler and D. Perlman (Eds.) Microbial Technology, 2nd ed Academic Press New York NY 1 187–209Google Scholar
  899. Wang, T.-T., and B. H. Lee. 1997a Plasmids in Lactobacillus Crit. Rev. Biotechnol. 17 227–272PubMedCrossRefGoogle Scholar
  900. Wang, F. L., and S. Y. Lee. 1997b Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation Appl. Environ. Microbiol. 63 3703–3706PubMedGoogle Scholar
  901. Wang, F., and S. Y. Lee. 1998a High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium Biotechnol. Bioeng. 58 325–328PubMedCrossRefGoogle Scholar
  902. Wang, X., C. S. Gong, and G. T. Tsao. 1998b Bioconversion of fumaric acid to succinic acid by recombinant E. coli Appl. Biochem. Biotechnol. 70–72 919–928CrossRefGoogle Scholar
  903. Waterson, R. M., F. J. Castellino, G. M. Hass, and R. L. Hill. 1972 Purification and characterization of crotonase from Clostridium acetobutylicum J. Biol. Chem. 247 5266–5271PubMedGoogle Scholar
  904. Wayman, M., M. E. Martin, and G. Graf. 1962 Propionic Acid Fermentation. US Patent 3,067,107 Chem. Abstr. 58 7337Google Scholar
  905. Weber, G. H., and W. A. Broich. 1986 Shelf life extension of cultured dairy foods Cult. Dairy Prod. J. 21(4) 19–23Google Scholar
  906. Webster, J. R., S. J. Reid, D. T. Jones, and D. R. Woods. 1981 Purification and characterization of an autolysin from Clostridium acetobutylicum Appl. Environ. Microbiol. 41 371–374PubMedGoogle Scholar
  907. Weimer, P. J. 1984a Control of product fromation during glucose fermentation by Bacillus macerans J. Gen. Microbiol. 130 103–111Google Scholar
  908. Weimer, P. J. 1984b Fermentation of 6-deoxyhexoses by Bacillus macerans Appl. Environ. Microbiol. 47 263–267PubMedGoogle Scholar
  909. Weiss, N., U. Schillinger, and O. Kandler. 1983 Lactobacillus trichodes and Lactobacillus heterochiochii, subjective synonym of Lactobacillus fruitivorans Syst. Appl. Microbiol. 4 507–511PubMedCrossRefGoogle Scholar
  910. Weizmann, C. 1915 Improvements in bacterial fermentation of carbohydrates and in bacterial cultures for the same British Patent 4845Google Scholar
  911. Welch, R. W., F. B. Rudolph, and E. T. Papoutsakis. 1989 Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824) Arch. Biochem. Biophys. 273 309–318PubMedCrossRefGoogle Scholar
  912. Welch, R. W. 1991 Purification and studies of two butanol (ethanol) dehydrogenases and the effects of rifampicin and chloramphenicol on other enzymes important in the production of butyrate and butanol in Clostridium acetobutylicum ATCC 824 [PhD thesis] Rice University Houston TXGoogle Scholar
  913. Welling, H. 1998 Fibers industry get ready Apparel Industry Magazine 59 65–66Google Scholar
  914. Weusthuis, R. A., G. N. M. Huijberts, and G. Eggink. 1997 In: G. Eggink, A. Steinbuchel, Y. Poirer, and B. Witholt (Eds.) Proceedings of the 1996 International Symposium on bacterial Polyhydroxyalkanoates NRC Research Press 102–109Google Scholar
  915. Weyer, E. R., and L. F. Rettger. 1927 A comparative study of six different strains of the organism commonly concerned in large-scale production of butyl alcohol and acetone by the biological process J. Bacteriol. 14 399–424PubMedGoogle Scholar
  916. White, D. 1995 The Physiology and Biochemistry of Prokaryotes Oxford University Press New York NYGoogle Scholar
  917. Whitfield, C. D., and S. G. Mayhew. 1974 Purification and properties of electron-transferring flavoprotein from Peptostreptococcus elsdenii J. Biol. Chem. 249 2801–2810PubMedGoogle Scholar
  918. Wiegel, J. 1980 Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes Experientia 36 1434–1446CrossRefGoogle Scholar
  919. Wiegel, J., M. Braun, and G. Gottschalk. 1981 Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide Curr. Microbiol. 5 255–260CrossRefGoogle Scholar
  920. Wiegel, J., and L. G. Ljungdahl. 1986 The importance of thermophilic bacteria in biotechnology Crit. Rev. Biotechnol. 3 39–108CrossRefGoogle Scholar
  921. Wiegel, J. 1992 The obligately anaerobic thermophilic bacteria In: J. K. Kristjansson (Ed.) Thermophilic Bacteria CRC Press Boca Raton FL 105–184Google Scholar
  922. Wiegel, J. 1994 Acetate and the potential of homoacetogenic bacteria for industrial applications In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York NY 484–504CrossRefGoogle Scholar
  923. Wiesenborn, D. P., F. B. Rudolph, and E. T. Papoutsakis. 1988 Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents Appl. Environ. Microbiol. 54 2717–2722PubMedGoogle Scholar
  924. Wiesenborn, D. P., F. B. Rudolph, and E. T. Papoutsakis. 1989a Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids Appl. Environ. Microbiol. 55 323–329PubMedGoogle Scholar
  925. Wiesenborn, D. P., F. B. Rudolph, and E. T. Papoutsakis. 1989b Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis Appl. Environ. Microbiol. 55 317–322PubMedGoogle Scholar
  926. Wilke, D. 1995 What should and what can biotechnology contribute to chemical bulk production? FEMS Microbiol. Rev. 16 89–100CrossRefGoogle Scholar
  927. Wilke, D. 1999 Chemicals from biotechnology: Molecular plant genetics will challenge the chemical and the fermentation industry Appl. Microbiol. Biotechnol. 52 135–145PubMedCrossRefGoogle Scholar
  928. Wilkinson, S. R., and M. Young. 1994 Targeted integration of genes into the Clostridium acetobutylicum chromosome Microbiology 140 89–95CrossRefGoogle Scholar
  929. Wilkinson, S. R., and M. Young. 1995 Physical map of the Clostridium beijerinckii (formerly Clostrdium acetobutylicum) NCIMB 8052 chromosome J. Bacteriol. 177 439–448PubMedGoogle Scholar
  930. Wilkinson, S. R., D. I. Young, J. G. Morris, and M. Young. 1995 Molecular genetics and the initiation of solventogenesis in Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052 FEMS Microbiol. Rev. 17 275–285PubMedCrossRefGoogle Scholar
  931. Williams, D. R., D. I. Young, and M. Young. 1990 Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum J. Gen. Microbiol. 136 819–826PubMedCrossRefGoogle Scholar
  932. Wills, C., P. Kratofil, D. Londo, and T. Martin. 1981 Characterization of the two alcohol dehydrogenases of Zymomonas mobilis Arch. Biochem. Biophys. 210 775–785PubMedCrossRefGoogle Scholar
  933. Winston, S. J. 1981 Ethanol Fuels: Use, Production & Economics. Solar Energy Information Data Bank, 1st ed US Government Printing OfficeGoogle Scholar
  934. Winzer, K., K. Lorenz, and P. Dü. 1997 Acetate kinase from Clostridium acetobutylicum: A highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis Microbiology 143 3279–3286PubMedCrossRefGoogle Scholar
  935. Winzer, K., K. Lorenz, B. Zickner, and P. Dü. 2000 Differential regulation of two thiolase genes from Clostridium acetobutylicum DSM 792 J. Molec. Microbiol. Biotechnol. 2 531–541Google Scholar
  936. Wittlich, P., A. Themann, and K.-D. Vorlop. 2001 Conversion of glycerol to 1,3-propanediol by a newly isolated thermophilic strain Biotechnol. Lett. 23 463–466CrossRefGoogle Scholar
  937. Wong, H. H., and S. Y. Lee. 1998 Poly(3-hydroxybutyrate) production from whey by high density cultivation of recombinant Escherichia coli Appl. Microbiol. Biotechnol. 50 30–33PubMedCrossRefGoogle Scholar
  938. Wood, H. G., and C. H. Werkman. 1938 The utilization of CO2 by the propionic acid bacteria Biochem. J. 32 1262–1271PubMedGoogle Scholar
  939. Wood, H. G., and C. H. Werkman. 1940 The relationship of bacterial utilization of CO2 to succinic acid formation Biochem. J. 34 129–138PubMedGoogle Scholar
  940. Wood, B. E., and L. O. Ingram. 1992 Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum Appl. Environ. Microbiol. 58 2103–2110PubMedGoogle Scholar
  941. Wood, A. 2001 DuPont, Genencor extend alliance Chem. Week 163 38Google Scholar
  942. Woods, D. R. 1995 The genetic engineering of microbial solvent production Trends Biotechnol. 13 259–264PubMedCrossRefGoogle Scholar
  943. Woolley, R. C., A. Pennock, R. J. Ashton, A. Davies, and M. Young. 1989 Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum Plasmid 22 169–174PubMedCrossRefGoogle Scholar
  944. Woolley, R. C., and J. G. Morris. 1990 Stability of solvent production by Clostridium acetobutylicum in continuous culture: Strain differences J. Appl. Bacteriol. 69 718–728CrossRefGoogle Scholar
  945. Worden. R. M., A. J. Grethlein, J. G. Zeikus, and R. Datta. 1989 Butyrate production from carbonmonoxide by Butyribacterium methylotrophicum App. Biochem. Biotechnol. 20/21 687–698CrossRefGoogle Scholar
  946. Worden, R. M., G. A. J., M. K. Jain, and R. Datta. 1991 Production of butanol and ethanol from synthesis gas via fermentation Fuel 70 615–619CrossRefGoogle Scholar
  947. Worden, R. M., M. D. Bredwell, and A. J. Grethlein. 1997 Engineering issues in synthesis-gas fermentations In: B. C. Saha and J. Woodward (Eds.) Fuels and Chemicals from Biomass American Chemical Society Washington DC ACS Symposium Series 666 320–335CrossRefGoogle Scholar
  948. Woskow, S. A., and B. A. Glatz. 1991 Propionic acid production by a propionic acid tolerant strain of Propionibacterium acidipropionici in batch and semicontinuous fermentation Appl. Environ. Microbiol. 57 2821–2828PubMedGoogle Scholar
  949. Wyman, C. E. 1994 Ethanol from lignocellulosic biomass: Technology, economics, and opportunities Bioresource Technol. 50 3–16CrossRefGoogle Scholar
  950. Wyman, C. E. (Ed.). 1996 Handbook on Bioethanol: Production and Utilization Taylor and Francis Washington DCGoogle Scholar
  951. Wyman, C. E. 2001 Twenty years of trials, tribulations and research progress in bioethanol technology Appl. Biochem. Biotechnol. 91–93 5–21PubMedCrossRefGoogle Scholar
  952. Xavier, A. M. R. B., L. M. D. Gonsalvas, and J. L. Moreira. 1995 Operation patterns affecting lactic acid production in ultrafiltration cell recycle bioreactor Biotechnol. Bioeng. 45 320–327PubMedCrossRefGoogle Scholar
  953. Xue, Y., Y. Xu, Y. Liu, Y. Ma, and P. Zhou. 2001 Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tongcong, China Int. J. Syst. Evol. Microbiol. 51 1335–1341PubMedGoogle Scholar
  954. Yabuuchi, E., Y. Kosako, I. Yano, H. Hotta, and Y. Nishiuchi. 1995 Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia salanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov Microbiol. Immunol. 39 897–904PubMedGoogle Scholar
  955. Yamada, K. 1977 Recent advances in industrial fermentation in Japan Biotech. Bioeng. 19 1563–1621CrossRefGoogle Scholar
  956. Yamamoto, I., T. Saiki, S.-M. Liu, and L. G. Ljungdahl. 1983 Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein J. Biol. Chem. 258 1826–1832PubMedGoogle Scholar
  957. Yan, R.-T., C.-X. Zhu, C. Golemboski, and J.-S. Chen. 1988 Expression of solvent-forming enzymes and onset of solvent production in batch cultures of Clostridium beijerinckii (“Clostridium butylicum”) Appl. Environ. Microbiol. 54 642–648PubMedGoogle Scholar
  958. Yan, R.-T., and J.-S. Chen. 1990 Coenzyme A-acylating adlehyde dehydrogenase from Clostridium beijerinckii NRRL B592 Appl. Environ. Microbiol. 56 2591–2599PubMedGoogle Scholar
  959. Yan, R.-T. 1991 Enzymology of butanol formation in Clostridium beijerinckii NRRL B592 [PhD thesis] Virginia Polytechnic Institute and State University Blacksburg VAGoogle Scholar
  960. Yang, S. T., H. Zhu, Y. Li, and G. Hong. 1994 Continuous propionate production from whey permeate using a novel fibrous bed bioreactor Biotech. Bioeng. 43 1124–1130CrossRefGoogle Scholar
  961. Yang, S. T., Z. W. Jin, and B. H. Chollar. 1997 Production of low-cost acetate deicers from biomass and industrial wastes Snow Removal and Ice Control Technology Transportation Research Board, National Research Council Washington DC 60–69Google Scholar
  962. Yang, S. T., Y. L. Huang, Z. Jin, Y. Huang, H. Zhu, and W. Qin. 1999 Calcium Magnesium Acetate at Power-production Cost: Production of CMA Deicer from Cheese Whey US DOT Publication No. FHWA-RD-98-174Google Scholar
  963. Yasui, Y. 1958 Process for continuous production of vinegar. Japanese Patent 244,905 Publication No. Sho. 33–3798/1958Google Scholar
  964. Yeh, C.-S. 1955 Butanol-acetone fermentation [in Chinese] In: Petroleum Communications China Petroleum Corporation Taiwan China December, Issue 54 10–19Google Scholar
  965. Yomano, L. P., S. W. York, and L. O. Ingram. 1998 Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production J. Ind. Microbiol. Biotechnol. 20 132–138PubMedCrossRefGoogle Scholar
  966. Yoon, K.-H., and M. Y. Pack. 1990 Nucleotide sequence of the Zymomonas mobilis alcohol dehydrogenase II gene Nucleic Acids Res. 18 187PubMedCrossRefGoogle Scholar
  967. Yoon, K.-H., J.-K. Lee, and B. H. Kim. 1991 Construction of a Clostridium acetobutylicum-Escherichia coli shuttle vector Biotechnol. Lett. 13 1–6CrossRefGoogle Scholar
  968. Yoshino, S., T. Yoshino, S. Hara, S. Ogata, and S. Hayashida. 1990 Construction of shuttle vector plasmid between Clostridium acetobutylicum and Escherichia coli Agric. Biol. Chem. 54 437–441PubMedCrossRefGoogle Scholar
  969. Young, M., N. P. Minton, and W. L. Staudenbauer. 1989 Recent advances in the genetics of the clostridia FEMS Microbiol. Rev. 63 301–326CrossRefGoogle Scholar
  970. Young, M. 1993 Development and exploitation of conjugative gene transfer in clostridia In: D. R. Woods (Ed.) The Clostridia and Biotechnology Butterworth-Heinemann London 99–118Google Scholar
  971. Youngleson, J. S., J. D. Santangelo, D. T. Jones, and D. R. Woods. 1988 Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli Appl. Environ. Microbiol. 54 676–682PubMedGoogle Scholar
  972. Youngleson, J. S., D. T. Jones, and D. R. Woods. 1989 Homology between hydroxybutyryl and hydroxyacyl coenzyme A dehydrogenase enzymes from Clostridium acetobutylicum fermentation and vertebrate fatty acid β-oxidation pathways J. Bacteriol. 171 6800–6807PubMedGoogle Scholar
  973. Youngleson, J. S., F.-P. Lin, S. J. Reid, and D. R. Woods. 1995 Structure and transcription of genes within the β-hbd-adh1 region of Clostridium acetobutylicum P262 FEMS Microbiol. Lett. 125 185–192PubMedGoogle Scholar
  974. Yu, E. K. C., and J. N. Saddler. 1982a Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid Appl. Environ. Microbiol. 44 777–784PubMedGoogle Scholar
  975. Yu, E. K. C., N. Levitin, and J. N. Saddler. 1982b Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid-hydrolyzed wood hemicellulose Biotechnol. Lett. 4 741–746