Skip to main content

Cave minerals

  • Reference work entry
Mineralogy

Part of the book series: Encyclopedia of Earth Science ((EESS))

  • 200 Accesses

Caves provide a void space in the earth that proves an ideal environment for certain types of low-temperature mineral deposition. Beyond a transitional zone near the entrance, the temperature is constant and little different from the mean annual temperature of the locality. The cave environmental can be characterized as wet, mildly alkaline, and oxidizing. The pH of water ranges from 7 to 8, the eH from +0.4 to +0.6 volts. Moving water invades caves as flowing streams, as vertical flows from shafts and open fractures, and as seepage water percolating through joints and small fractures from the land surface. Caves can act as sinks for carbon dioxide because they are usually well ventilated. Measured CO2 pressures are in the range of 10−2.2 to 10−2.9 atm compared with 10−3.5 at the surface.

The mineralizing solutions in caves are the seeping and flowing waters. Cave water is a dilute, low-temperature solution, containing mainly the ions Ca2+, Mg2+, Na+, HCO 3, SO2− 4, and Cl. Sodium...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrieux, C., 1962. Etude cristallographique des édifices stalactitiques, Bull. Soc. fr. Minéral. Cristallogr., 85, 67–76.

    Google Scholar 

  • Andriex, C., 1965. Morphogenese des hélicites monocristallines, Bull Soc. fr. Minéral. Cristallogr., 88, 163–171.

    Google Scholar 

  • Baker, George, and Frostick, A. C., 1947. Pisoliths and ooliths from some Australian caves and mines, J. Sed. Petrology, 17, 39–67.

    Google Scholar 

  • Baker, George, and Frostick, A. C., 1951. Pisoliths, ooliths and calcareous growths in limestone caves at Port Campbell, Victoria, Australia, J. Sed. Petrology, 21, 85–104.

    Google Scholar 

  • Bridge, P. J., 1973a. Urea, a new mineral, and neotype phosphammite from Western Australia, Mineralog. Mag., 39, 346–348.

    Google Scholar 

  • Bridge, P. J., 1973b. Guano minerals from Murra-el-elevyn Cave, Western Australia, Mineralog. Mag., 39, 467–469.

    Google Scholar 

  • Bridge, P. J., 1974. Guanine and uricite, two new organic minerals from Peru and Western Australia, Mineralog. Mag., 39, 889–890.

    Google Scholar 

  • Curl, Rane L., 1962. The aragonite-calcite problem, Bull. Natl. Speleol. Soc., 24, 57–73.

    Google Scholar 

  • Curl, Rane L., 1972. Minimum diameter stalactites, Bull. Natl. Speleol. Soc., 34, 129–136.

    Google Scholar 

  • Curl, Rane L., 1973. Minimum diameter stalagmites, Bull. Natl. Speleol. Soc., 35, 1–9.

    Google Scholar 

  • Fischbeck, Reinhard, and Müller, German, 1971. Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite, and calcite in speleothems of the Frankische Schweiz, Western Germany, Contr. Mineralogy Petrology, 33, 87–92.

    Article  Google Scholar 

  • Hicks, Forrest L., 1950. Formation and mineralogy of stalactites and stalagmites, Bull. Natl. Speleol. Soc., 12, 63–72.

    Google Scholar 

  • Hill, Carol A., 1976. Cave Minerals: Huntsville, Alabama: National Speleological Society, 137p.

    Google Scholar 

  • Holland, Heinrich D., et al., 1964. On some aspects of the chemical evolution of cave waters, J. Geol., 72, 36–67.

    Google Scholar 

  • Kaye, Clifford A., 1959. Geology of Isla Mona, Puerto Rico, and notes on the age of Mona Passage, U.S. Geol. Surv. Prof. Paper 317-C, 141–178.

    Google Scholar 

  • Mélon, J., and Bourguignon, P., 1962. Etude du Mondmilch de quelque grottes de Belgigue, Bull. Soc. fr. Mineral. Cristallogr., 85, 234–241.

    Google Scholar 

  • Moore, George W., 1954. The origin of helictites, Natl. Speleol. Soc. Occ. Paper No. 1, 16p.

    Google Scholar 

  • Moore, George W., 1962a. The growth of stalactites. Bull. Natl. Speleol. Soc., 24, 95–106.

    Google Scholar 

  • Moore, George W., 1962b. Role of earth tides in the formation of disc-shaped cave deposits, Proc. 2nd Internat. Cong. Speleol., 1, 500–506.

    Google Scholar 

  • Moore, George W., 1970. Checklist of cave materials, Natl. Speleol. Soc. News, 28, 9–10.

    Google Scholar 

  • Murray, John W., and Dietrich, Richard V., 1956. Brushite and taranakite from Pig Hole Cave, Giles County, Virginia, Am. Mineralogits, 41, 616–626.

    Google Scholar 

  • Thrailkill, John, 1968. Dolomite cave deposits from Carlsbad Caverns, J. Sed. Petrology, 38, 141–145.

    Google Scholar 

  • Thrailkill, John, 1971. Carbonate deposition in Carlsbad Caverns, J. Geol., 79, 683–695.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Hutchinson Ross Publishing Company

About this entry

Cite this entry

White, W.B. (1981). Cave minerals . In: Mineralogy. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30720-6_21

Download citation

  • DOI: https://doi.org/10.1007/0-387-30720-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-87933-184-9

  • Online ISBN: 978-0-387-30720-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics