Skip to main content

Quartz

  • Reference work entry
Mineralogy

Part of the book series: Encyclopedia of Earth Science ((EESS))

  • 210 Accesses

The name quartz is derived from “quertz,” itself a contraction of “Querklufterz” (cross-vein ore), a mining term that was in use in Saxony. The ancient term crystallos, from the Greek word for frozen water, is still used for the variety rock crystal. Otherwise, the term “crystal” has now (since M. A. Cappeler, 1723, and Romé de I'Isle, 1772) a more general significance.

Historical Notes

Quartz has been known, and made use of, since the palaeolithicum. Great technical skills were developed in early times, as is evidenced by the carved gems of Crete, Greece, Rome, and Alexandria. There are, however, few meaningful indications on quartz before the late Renaissance. From that time on, fundamental observations have been made on quartz.

The law of constancy of angles is based on a work by Nicolaus Steno, 1669, which is preponderantly on quartz. The Prodromus Crystallographiaeby Moritz Anton Cappeler, 1723, first to use the term crystallography and first to attempt a correlation of shape,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bambauer, H. U., 1961. Spurenelementgehalte und Farbzentren in Quartzen aus Zerrklüften der Schweizer Alpen, Schweiz Mineral. Petrogr. Mitt., 41, 335–369.

    Google Scholar 

  • Bambauer, H. U., et al., 1961. Beobachtungen über Lamellenbau an Bergkristallen, Zeit. Kristallog., 116, 173–181.

    Google Scholar 

  • Boyle, R. W., 1953. On the colour of black and grey quartz from Yellowknife, Northwest Territories, Canada, Am. Mineralogist, 38, 528–535.

    Google Scholar 

  • Brunner, G. O.; Wondratschek, H.; and Laves, F., 1961. Ultrarotuntersuchungen über den Einbau von H in natürlichem Quartz, Zeit. Elektrochemie, 56, 725–750.

    Google Scholar 

  • Bukanov, V. V., 1974. Rock crystal from the subpolar Urals, (in Russian), Akad. Nauk SSSR, Komi Filial, Inst. Geol., 212p.

    Google Scholar 

  • Cady, W. G., 1946. Piezoelectricity. New York: McGraw-Hill, 000p.

    Google Scholar 

  • Clark, S. P., 1966. Handbook of Physical Constants. Geol. Soc. Am. Mem., 97, 587p.

    Google Scholar 

  • d'Ans-Lax, J., 1970. In K. Schafer and C. Synowietz, eds., Taschenbuch für Chemiker u. Physiker, vol. 3. Berlin, Heidelberg, New York: Springer-Verlag, p. 365.

    Google Scholar 

  • Deer, W. A.; Howie, R. A.; and Zussman, J., 1962. Rock-Forming Minerals, vol. 4, Framework Silicates. London: Longmans, 179–230.

    Google Scholar 

  • Donnay, J. D. H., and Le Page, Y., 1975. Twin Laws versus electrical and optical characters in low quartz, Canadian Mineral., 13, 83–85.

    Google Scholar 

  • Engel, P.; Gross, G.; and Nowacki, W., 1964. Alpine Quarzkristalle mit Einschlüssen als (R-L) Zwillinge, Schweiz. Mineral. Petrogr. Mitt., 44, 485–488.

    Google Scholar 

  • Ernst, T., 1955. Kristallphysik. In Landolt-Börnstein, vol. I, pt. 4. Berlin: Springer-Verlag.

    Google Scholar 

  • Flörke, O. W., 1967. Die Modifikationen von SiO2, Fortschr. Mineral., 44, 181–230.

    Google Scholar 

  • Frederickson, A. F., 1955. Mosaic structure in quartz, Am. Mineralogist, 40, 1–9.

    Google Scholar 

  • French, B. M., and Short, N. M., eds., 1968. Shock Metamorphism of Natural Materials. Baltimore: Mono Book Corp., 644p.

    Google Scholar 

  • Friedlaender, C., 1951. Untersuchung über die Eignung alpiner Quarze für piezoelektrische Zwecke, Beitr. Geol. Schweiz, Geotech. Ser., 29, 98p.

    Google Scholar 

  • Frondel, C., 1962. Dana's System of Mineralogy, vol. 3, Silica Minerals, 7th ed. New York: Wiley, 333p.

    Google Scholar 

  • Gray, D. E., ed., 1957. Handbook, American Institute of Physics. New York: McGraw-Hill.

    Google Scholar 

  • Gross, G., 1969. Ueber Flächenverteilung und Symmetrie bei Quarzzwillingen, Aufschluss, 20, 29–53.

    Google Scholar 

  • Michel-Lévy, A., and Meunier-Chalmas, S., 1892. Mémoire sur diverses formes affectées par le réseau élémentaire du quartz, Bull. Soc. Fr. Mineral., 15, 159–190.

    Google Scholar 

  • Morey, G. W.; Fournier, R. O.; and Rowe, J. J., 1962. The solubility of quartz in water in water in the temperature interval from 25° to 300°C, Geochim. Cosmochim. Acta, 26, 1029–1043.

    Article  Google Scholar 

  • Niggli, P., 1926. Beziehungen Zwischen Struktur und äusserer Morphologie am Quartz, Zeit. Kristallogr., 63, 295–311.

    Google Scholar 

  • Poty, B., 1969. La croissance des cristaux de quartz dans les filons sur l'exemple du filon de La Gardette (Bourg d'Oisans) et des filons du Mont Blanc, These Univ. Nancy, Sciences Terre, Mém. 17, 162p.

    Google Scholar 

  • Rosenbusch, H., and Mügge, O., 1927. Mikroskopische Physiographie der petrographisch wichtigen Mineralien, vol. 1, (2). Stuttgart: E. Schweizerbart, 174–213.

    Google Scholar 

  • Savin, S. M., and Epstein, S., 1970. The oxygen isotopic composition of coarse grained sedimentary rocks and minerals, Geochim. Cosmochim. Acta, 34, 323–329.

    Article  Google Scholar 

  • Schubnikow, A., and Zinserling, K., 1932. Ueber die Schlagund Druckfiguren und über die mechanischen Quarzzwillinge, Zeit. Kristallogr., 83, 243–264.

    Google Scholar 

  • Siever, R., and Scott, R. A., 1963. Organic Geochemistry of Silica, in I. A. Breger, ed., Organic Geochemistry. Oxford: Pergamon, 579–595.

    Google Scholar 

  • Sosman, R. B., 1965. The Phases of Silica, 2nd ed. New Brunswick, N.J.: Rutgers University Press, 389p.

    Google Scholar 

  • Szivessy, G., 1937. Neuere Untersuchungen über die optischen Erscheinungen bei aktiven Kristallen, Fortschr. Mineral. Kristallogr. Petrogr., 21, 111–168.

    Google Scholar 

  • Tertsch, H., 1949. Die Festigkeitserscheinungen der Kristalle. Vienna: Springer-Verlag, 310p.

    Google Scholar 

  • Tröger, W. E., 1967. Optische Bestimmung der gesteinsbildenden Minerale, vol. 2. Stuttgart: E. Schweizerbart, 154–166.

    Google Scholar 

  • Turner, F. J., and Weiss, L. E., 1963. Structural Analysis of Metamorphic Tectonites. New York: McGraw-Hill, 545p.

    Google Scholar 

  • White, S., 1973. The dislocation structures responsible for the optical effects in some naturally deformed quartzes, J. Mater. Sci., 8, 490–499.

    Article  Google Scholar 

Cross-references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Hutchinson Ross Publishing Company

About this entry

Cite this entry

Friedlaender, C.G.I. (1981). Quartz . In: Mineralogy. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30720-6_120

Download citation

  • DOI: https://doi.org/10.1007/0-387-30720-6_120

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-87933-184-9

  • Online ISBN: 978-0-387-30720-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics