Skip to main content

Activation Analysis

  • Reference work entry
  • 1771 Accesses

1 Introduction

In their early experiments with rare earth elements, Georg Hevesy and his student Hilde Levi observed that some of the elements became highly radioactive when exposed to irradiation with neutrons. Hevesy recognized that this method could be used for the qualitative detection of the rare earth elements, and he and Levi were the first to report on the new method of activation analysis (Hevesy and Levi 1936). At that time, the element discrimination was based on the half-life rather than the energy of the emitted radiation.

However, the method of neutron activation analysis (NAA) was not used much after its discovery. Only when the developing reactor technology in the 1950's made more neutron sources available, a rapid growth in NAA occurred. It should be noted that the initial development was combined with skilful advancements in radiochemistry since the radionuclides of interest had to be separated from interfering activities. This growth was further enhanced when...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    1 Editors' note: See also Eqs. (5) and (6) in Chapter 1, Volume 4, on ‘Reactor Produced Medical Radionuclides’.

  2. 2.

    2 Editors' note: See FIGURE 10 (left diagram) in Chapter 3, Volume 1, on ‘Nuclear Reactions’. The diagram also shows the ‘1/u’ law mentioned that appears as a sloping line in the log-log presentation.

  3. 3.

    3 Editors' note: See Eq. (33) as well as Chapter 3, Volume 5, on ‘Particle Accelerators’.

  4. 4.

    4 Editors' note: See more about stopping power in Chapter 6, Volume 1, on ‘Interaction of Radiation with Matter’, starting with Eq. (1).

  5. 5.

    5 The range is normally denoted by R, however, we have decided to change it to r, which cannot be confused with the reaction rate.

  6. 6.

    6 Editors' note: Note that the ‘macroscopic cross section’ is an analogous quantity to the ‘linear attenuation coefficient’ that is used in the exponent of the ‘Beer-Lambert law’ describing the attenuation of ? radiation.

  7. 7.

    7 Editors' note: See also Eqs. (66) and (67) in Subsection 4.3 of Chapter 5, Volume 1, on ‘Kinetics of Radioactive Decay’.

  8. 8.

    8 Editors' note: Throughout this chapter, the term ‘flux’ is used in the sense ‘flux density’ (dimension: cm-2 s-1). Although this use is not quite correct, we did not change it, firstly because most ‘neutron’ people use it that way and, secondly, because the ‘real flux’ (meaning the number of particles per time) is called here beam intensity I (see, e.g., Eq. (33)) so the two cannot be confused. The time integral of flux density is called ‘fluence’, giving the explanation for another synonym of the flux density: ‘fluence rate’.

  9. 9.

    9 Editors' note: See Appendix 1 of Volume 1 for ‘The International System of Units (SI)’.

  10. 10.

    10 Editors' note: The resonance integral has been defined by Eq. (6).

  11. 11.

    11 Editors' note: Note that for simplicity's sake, the Authors have omitted x (referring to the measured/unknown sample) from the subscripts in Eq. (38).

  12. 12.

    12 Editors' note: See more about radiochemical separations in Chapters 6 and 7, Volume 5, on’ solvent Extraction and Ion Exchange in Radiochemistry’ and ‘Radiochemical Separations by Thermochromatography’, respectively.

  13. 13.

    13 Editors' note: The separation techniques described in Chapters 6 and Chapter7 of Volume 5 are really fast. Fast separation is also a crucial requirement for the identification of transuranium/transactinide and superheavy elements as discussed in Chapters 710 of Volume 2.

  14. 14.

    14 Editors' note: HDEHP is di(2-ethyl-hexyl)orthophosphoric acid. It is used in SISAK equipment, e.g., for the identification of 243Np and 244Np. (See FIGURE 10 in Chapter 7, Volume 2, on ‘Production and Chemistry of Transuranium Elements’).

  15. 15.

    15 Editors' note: The term ‘photopeak’ means the same as the ‘full-energy peak’ used in Chapter 1, Volume 5, on ‘Radiation Detection’. The reason for the longer expression is that in a voluminous detector the photopeak is not necessarily connected with a single photoelectric effect. It can also be the result of a sequence of Compton scatterings etc. within the sensitive volume.

  16. 16.

    16 Editors' note: It has been pointed out in Chapter 7, Volume 1, on’ statistical Aspects of Nuclear Measurements’ (see remark (#70) and Eq. (111) there) that the dead time in itself (i.e. without any loss correction) will spoil the Poisson distribution of counts.

  17. 17.

    17 Editors' note: See Eq. (58) in Chapter 7, Volume 1, on’ statistical Aspects of Nuclear Measurements’.

  18. 18.

    18 Editors' note: For the benefit of those who are not familiar with American idioms we should mention that the adjective ‘round-robin’ means here that the analysis is done on samples taken from the same material sent to different NAA-labs.

  19. 19.

    19 Editors' note: Although the dimensions are different, the peculiar shapes of the curves can be traced back to that of the Bragg curve shown in FIGURE 5 of Chapter 6, Volume 1, on ‘Interaction of Radiation with Matter’.

  20. 20.

    20 Editors' note: As regards the rate of energy loss of charged particles and its dependence on different parameters see, e.g., Eqs. (1) and (3) in Chapter 6, Volume 1, on ‘Interaction of Radiation with Matter’.

  21. 21.

    21 Editors' note: Regular (mass) surface density (in g cm-2) gives essentially the same accuracy as areal number density (in atoms/cm2). This is why the stopping power expressions in Chapter 6, Volume 1, contain x as a measure of sample thickness in surface density units (e.g. in g/cm2) rather than a linear distance (in cm).

References to Activation Analysis

  • ABUGASSA, I., SARMANI, S. B., SAMAT, S. B., 1999, Appl. Radiat. Isot., 50, 989.

    Article  CAS  Google Scholar 

  • ALFASSI, Z. B., 1994a, Determination of Trace Elements (Rehovot: Balaban Publ.).

    Google Scholar 

  • ALFASSI, Z. B., (editor), 1994b, Chemical Analysis by Nuclear Methods (Chichester: Wiley).

    Google Scholar 

  • ALFASSI, Z. B., CHUNG, C., 1995, Prompt Gamma Neutron Activation Analysis, (Boca Raton: CRC Press).

    Google Scholar 

  • ALFASSI, Z. B., 2001, Non-Destructive Elemental Analysis, edited by Z. B. Alfassi (Oxford: Blackwell Sciences, Ltd.) Chapter 1, pp. 4–57.

    Google Scholar 

  • AMPHLETT, C. B., 1964, Inorganic Ion Exchangers (Amsterdam: Elsevier).

    Google Scholar 

  • ANDERSON, D. L., CUNNINGHAM, W. C., MACKEY, E. A., 1990, Fresen. J. Anal. Chem., 338, 554.

    Article  CAS  Google Scholar 

  • ANDERSON, J., OSBORN, S. B., TOMLINSON, R. W. S., NEWTON, D., RUNDO, J., SALMON, L., 1964, Lancet, II, 1201.

    Google Scholar 

  • AUMANN, D. C., GÜNER, D., 1999, J. Radioanal. Nucl. Chem., 242(3), 641.

    Article  CAS  Google Scholar 

  • BALLA, M., KEÖMLEY, G., MOLNÁR, ZS., 1998, Nuclear Methods in Mineralogy and Geology, edited by A. Vértes, S. Nagy, and K. Süvegh (New York: Plenum), Chapter 2, pp. 115–143.

    Google Scholar 

  • BECKER, D. A., 1987, J. Radioanal. Nucl. Chem., 111, 393.

    Google Scholar 

  • BECKER, D. A., 1993, J. Radioanal. Nucl. Chem., 168, 169.

    Article  CAS  Google Scholar 

  • BECKER, D. A., ANDERSON, D. L., LINDSTROM, R. M., GREENBERG, R. R., GARRITY, K. M., MACKEY, E. A., 1994, J. Radioanal. Nucl. Chem., 179, 149.

    Article  CAS  Google Scholar 

  • BIERSACK, J. P., FINK, D., (1973), Nucl. Instrum. Meth., 108, 397.

    Article  CAS  Google Scholar 

  • BISO, J. N., COHEN, I. M., RESNIZKI, S. M., 1983, Radiochem. Radioanal. Lett., 58, 175.

    CAS  Google Scholar 

  • BLAAUW, M., 1996, Nucl. Sci. Eng., 124, 431.

    CAS  Google Scholar 

  • BLAAUW, M., OSORIO FERNANDEZ, V., Van Espen, P., BERNASCONI, G., CAPOTE NOY, R., MANH DUNG, H., MOLLA, N. I., 1997, Nucl. Instrum. Meth. A, 387, 416.

    Article  CAS  Google Scholar 

  • BLAAUW, M., GELSEMA, S. J., 1999, Nucl. Instrum. Meth. A, 422, 417.

    Article  CAS  Google Scholar 

  • BLANCHARD, L. J., ROBERTSON, J. D., 1997, The Analyst, 122, 1261.

    Article  CAS  Google Scholar 

  • BODE, P., OVERWATER, R. M. W., de Goeij, J. J. M., 1997, J. Radioanal. Nucl. Chem., 216, 5.

    Article  CAS  Google Scholar 

  • BORSARU, M., BIGGS, M., NICHOLS, W., BOS, F., 2001, Appl. Radiat. Isot., 54, 335.

    Article  CAS  Google Scholar 

  • Brätter, P., GATSCHKE, W., GAWLIK, D., KLATT, S., 1977, Kerntechnik, 19, 225.

    Google Scholar 

  • CALETKA, R., FAIX, W. G., KRIVAN, V. J., 1982, J. Radioanal. Nucl. Chem., 72, 109.

    CAS  Google Scholar 

  • CALETKA, R., HAUSBECK, R., KRIVAN, V. J., 1988, J. Radioanal. Nucl. Chem., 120, 305.

    Article  CAS  Google Scholar 

  • CCQM, 2002, Key Comparison Data Base (KCDB) (Sèvres, France: Bureau International des Poids et Mesures). Published on the internet: http://kcdb.bipm.org/default.asp

    Google Scholar 

  • CHAI, C. F., 1988, Isotopenpraxis, 24, 257.

    CAS  Google Scholar 

  • CHAI, C. F., MA, S. L., MAO, X. Y., LIAO, K. N., LIU, W. C., 1987, J. Radioanal. Nucl. Chem., 114, 281.

    Article  CAS  Google Scholar 

  • CHUNG, C., 1990, Activation Analysis, Vol. 2, edited by Z. B. Alfassi (Boca Raton: CRP Press), Chapter 6, pp. 299–320.

    Google Scholar 

  • CLAYTON, C. G., WORMALD, M. R., 1983, Int. J. Appl. Radiat. Isot., 34, 3.

    Article  CAS  Google Scholar 

  • CLEARFIELD, A., 1982, Inorganic Ion Exchanger Materials (Boca Raton: CRC Press).

    Google Scholar 

  • CSIKAI, J., 1987, CRC Handbook of Fast Neutron Generators, Vol. 1 & 2 (Boca Raton: CRC Press).

    Google Scholar 

  • CZAUDERNA, M., 1985, J. Radioanal. Nucl. Chem., 89, 13.

    Article  CAS  Google Scholar 

  • CZAUDERNA, M., 1996, Appl. Radiation Isotopes, 47(8), 735.

    Article  CAS  Google Scholar 

  • DANG, H. S., JAISWAL, D. D., PULLAT, V. R., MISHRA, U. C., 2000, J. Radioanal. Nucl. Chem., 243, 513.

    Article  CAS  Google Scholar 

  • DANG, H. S., JAISWAL, D. D., NAIR, S., 2001, J. Radioanal. Nucl. Chem., 249(1), 95.

    Article  CAS  Google Scholar 

  • DAMSGAARD, E., OSTERGAARD, K., HEYDORN, K., 1973, Talanta, 20, 1.

    Article  Google Scholar 

  • DEBERTIN, K., HELMER, R. G., 1988, Gamma-and X-Ray Spectrometry with Semiconductor Detectors, (Amsterdam: North-Holland).

    Google Scholar 

  • DE BRUIN, M., BLAAUW, M., 1992, Analyst, 117, 431.

    Article  Google Scholar 

  • DE BRUIN, M., 1998, J. Radioanal. Nucl. Chem., 234(1–2), 5.

    Article  Google Scholar 

  • DE CORTE, F., 1987a, The k0-standardization method (Gent: Rijksuniversiteit).

    Google Scholar 

  • DE CORTE, F., SIMONITS, A., DE WISPELAERE, A., HOSTE, J., 1987b, J. Radioanal. Nucl. Chem. Art., 113, 145.

    Article  Google Scholar 

  • DE CORTE, F., SIMONITS, A., DE WISPELAERE, A., ELEK, A., 1989a, J. Radioanal. Nucl. Chem. Art., 133, 3.

    Article  Google Scholar 

  • DE CORTE, F., SIMONITS, 1989b, J. Radioanal. Nucl. Chem. Art., 133, 43.

    Article  Google Scholar 

  • DE GOEIJ, J. J. M., 1999, J. Radioanal. Nucl. Chem., 245(1), 5.

    Article  Google Scholar 

  • DERMELJ, M., BYRNE, A. R., 1997, J. Radioanal. Nucl. Chem., 216, 13.

    Article  CAS  Google Scholar 

  • DE VOE, J. R., LAFLEUR, PH. D., eds., 1969, Modern Trends in Activation Analysis, NBS Special Publ. 312, Vol 1 & 2, (Washington, DC: US Government Printing Office).

    Google Scholar 

  • DUBCZINSKIJ, R., 1996, Zs. Anal. Him., 51(12), 1328 (in Russian).

    Google Scholar 

  • EGGER, K. P., KRIVAN, V., 1986, Fresen. J. Anal. Chem., 323, 827.

    Article  CAS  Google Scholar 

  • EGGER, K. P., KRIVAN, V., 1988, Fresen. J. Anal. Chem., 331, 394.

    Article  CAS  Google Scholar 

  • ELLIS, K. J., 1990, Activation Analysis, Vol. 2, edited by Z. B. Alfassi (Boca Raton: CRP Press), Chapter 10, pp. 407–426.

    Google Scholar 

  • ELLIS, K. J., 2000, Physiol. Rev., 80, 649.

    CAS  Google Scholar 

  • ELLIS, K. J., SHYPAILO, R. J., HERGENROEDER, A. C., PEREZ, M. D., ABRAMS, S. A., 2001, J. Radioanal. Nucl. Chem., 249, 461.

    Article  CAS  Google Scholar 

  • FARDY, J. J., 1990, Activation Analysis, Vol. 1., edited by Z. B. Alfassi (Boca Raton: CRC Press), Chapter 5, pp. 62–96.

    Google Scholar 

  • FARMER, O. T., BARINAGA, C. J., KOPPENAAL, D. W., 1998, J. Radioanal. Nucl. Chem., 234(1–2), 153.

    Article  CAS  Google Scholar 

  • FINK, D., 1996, HMI-B 539, Berlin.

    Google Scholar 

  • FISCHER, C. O., KELCH, J., LAURENZE, C., LEUTHE, R. W., SLUSALLEK, K., 1987, Kerntechnik, 51, 9.

    CAS  Google Scholar 

  • FLEMING, R. F., 1982, Int. J. Appl. Radiat. Isot., 33, 1263.

    Article  CAS  Google Scholar 

  • FRECHOU, C., CALMET, D., BOUISSET, P., PICCOT, D., GAUDRY, A., YIOU, F., RAISBECK, G., 2001, J. Radioanal. Nucl. Chem., 249(1), 133.

    Article  CAS  Google Scholar 

  • GARUTI, G., MELONI, S., ODDONE, M., 2000, J. Radioanal. Nucl. Chem., 245(1), 17.

    Article  CAS  Google Scholar 

  • GERMANI, M. S., GOKMEN, I., SIGLEO, A. C., KOWALCZYK, G. S., OLMEZ, I., SMALL, A. M., ANDERSON, D. L., FAILEY, M. P., GULOVALI, M. C., CHOQUETTE, C. E., LEPEL, E. A., GORDON, G. E., ZOLLER, W. H., 1980, Anal. Chem., 52, 240.

    Article  CAS  Google Scholar 

  • GILMORE, G., HEMINGWAY, J. D., 1995, Practical Gamma-Ray Spectrometry (Chichester: Wiley).

    Google Scholar 

  • GIRARDI, F., SABBIONI, E., 1968, Nucl. Chem., 1, 169.

    CAS  Google Scholar 

  • GLOVER, S. E., FILBY, R. H., CLARK, S. B., 1998, J. Radioanal. Nucl. Chem., 234(1–2), 65.

    Article  CAS  Google Scholar 

  • GLOVER, S. E., QU, H., LaMont, S. P., GRIMM, C. A., FILBY, R. H., 2001, J. Radioanal. Nucl. Chem., 248(1), 29.

    Article  CAS  Google Scholar 

  • GOERNER, W., BERGER, A., ECKER, K. H., HAASE, O., HEDRICH, M., SEGEBADE, C., WEIDEMANN, G., WERMANN, G., 2001, J. Radioanal. Nucl. Chem., 248, 45.

    Article  Google Scholar 

  • GOLDBRUNNER, T., HENTIG, R., ANGLOHER, F., FEILITZSCH, F., 1998, J. Radioanal. Nucl. Chem., 234(1–2), 43.

    Article  CAS  Google Scholar 

  • GONCALVES, C., FAVARO, D. I. T., De Oliveira, M. D., BOULET, R., VASCONCELLOS, M. B. A., SAIKI, M., 1998, J. Radioanal. Nucl. Chem., 235(1–2), 267.

    Article  Google Scholar 

  • GONCALVES, C., FAVARO, D. I. T., MELFI, A. J., De Oliveira, M. D., VASCONCELLOS, M. B. A., FOSTIER, A. H., GUIMARAES, J. R. D., BOULET, R., FORTI, M. C., 2000, J. Radioanal. Nucl. Chem., 243(3), 789.

    Article  CAS  Google Scholar 

  • GRASS, F., BICHLER, M., DORNER, J., HOLZNER, H., RITSCHEL, A., RAMADAN, A., WESTPHAL, G. P., GRASS, F., LEMMEL, H., WESTPHAL, G. P., GWOZDZ, R., 2001, J. Trace Microprobe Techn., 19, 211.

    Article  CAS  Google Scholar 

  • GREENBERG, R. R., FLEMING, R. F., ZEISLER, R., 1984, Environ. Int., 10, 129.

    Article  CAS  Google Scholar 

  • GREENBERG, R. R., LINDSTROM, R. M., SIMONS, D. S., 2000, Radioanal. Nucl. Chem., 245, 57.

    Article  CAS  Google Scholar 

  • GRIMANIS, A. P., KANIAS, G. D., 1982, J. Radioanal. Nucl. Chem., 72, 587.

    CAS  Google Scholar 

  • GUINN, V. P., 1999, J. Radioanal. Nucl. Chem., 244(1), 23.

    Article  Google Scholar 

  • GWOZDZ, R., 1994, Biol. Trace Elem. Res., 43, 33.

    Google Scholar 

  • HARMS, J., 1967, Nucl. Instrum. Meth., 53, 192.

    Article  Google Scholar 

  • HASTIE, D. R., SCHIFF, H. I., WHELPDALE, D. M., PETERSON, R. E., ZOLLER, W. H., ANDERSON, D. L., 1988, Atmos. Environ., 22, 2381.

    Article  CAS  Google Scholar 

  • Heller-Zeisler, S. F., BORGOUL, P. V., MOORE, R. R., SMOLIAR, M., SUAREZ, E., ONDOV, J. M., 2000, J. Radioanal. Nucl. Chem., 244(1), 93.

    Article  CAS  Google Scholar 

  • HELLER-ZEISLER, S.F., ONDOV, J. M., ZEISLER, R., 1999, Biol. Trace Element Res., 71–72, 195.

    Google Scholar 

  • HEVESY, G., LEVI, H., 1936, Math. Fys. Medd., 14, 34.

    Google Scholar 

  • HEYDORN, K., 1999, J. Radioanal. Nucl. Chem., 244(1), 7.

    Article  Google Scholar 

  • HILLARD, H. T., 1987, J. Radioanal. Nucl. Chem., 113, 125.

    Article  Google Scholar 

  • HOU, X. L., DAHLGAARD, H., RIETZ, B., JACOBSEN, U., NIELSEN, S. P., 2000, J. Radioanal. Nucl. Chem. 244, 87.

    Article  CAS  Google Scholar 

  • IAEA, 1987, Handbook of Nuclear Activation Data, Technical Report 273 (Vienna: International Atomic Energy Agency)

    Google Scholar 

  • ISMAIL, S. S., BREZOVITS, K., KLIKOVICH, W., 2001, Instrum. Sci. Technol., 29, 255.

    Article  CAS  Google Scholar 

  • ITAWI, R. K., TURREL, Z. R., 1973, J. Radioanal. Nucl. Chem., 106, 81.

    Google Scholar 

  • IYENGAR, V., 1981, J. Pathol., 134, 173.

    Article  CAS  Google Scholar 

  • JAMES, W. D., ZEISLER, R., 2001, J. Radioanal. Nucl. Chem., 248, 233.

    Article  CAS  Google Scholar 

  • JENKINS, R., GOULD, R. W., GEDCKE, D., 1981, Quantitative X-Ray Spectrometry (New York: Marcel Decker) pp. 208–287.

    Google Scholar 

  • KABAI, É., VAJDA, N., 2002, 14th Radiochemical Conference Proceedings (Marianske Lazne: Czech Technical University) p. 121.

    Google Scholar 

  • KAYZERO/SOLCOI, 1996, PC software package (DSM Research, POB 18, NL-6160 MD Geleen, The Netherlands).

    Google Scholar 

  • KIM, N. B., RAULERSON, M. R., JAMES, W. D., 1998, J. Radioanal. Nucl. Chem., 234(1–2), 71.

    Article  CAS  Google Scholar 

  • KNOLL, G. F., 2000, Radiation Detection and Measurement, 3rd ed., (New York: Wiley).

    Google Scholar 

  • KOLOTOV, V. P., DOGADKIN, N. N., Tsapizsnikov B. A., KARANDASHEV, V. K., SADIKOV, I. I., SAVELJEV, B. V., 1996, Zh. Anal. Himii, 51(12), 1315 (in Russian).

    Google Scholar 

  • KOSTA, L., 1969, Talanta, 16, 1297.

    Article  CAS  Google Scholar 

  • KRISHNAN, S., 2000, J. Radioanal. Nucl. Chem., 244, 209.

    Article  CAS  Google Scholar 

  • KUCERA, J., RANDA, Z., SOUKAL, L., 2001, J. Radioanal. Nucl. Chem., 249(1), 109.

    Article  Google Scholar 

  • KUCERA, J., ZEISLER, R., 2003, Low-Level Determination of Silicon in Biological Materials Using Radiochemical Neutron Activation Analysis, Proc. Sixth Int. Conf. on Methods And Applications of Radioanalytical Chemistry-MARC VI, Kailua-Kona, Hawaii, USA, April 7–11, 2003 (to be published in J. Radioanal. Nucl. Chem.)

    Google Scholar 

  • KUSHELEVSKY, A. P., 1990, Activation Analysis, Vol. 2, edited by Z. B. Alfassi (Boca Raton: CRP Press), Chapter 4, pp. 219–237.

    Google Scholar 

  • LANDSBERGER, S., PESHEV, S., 1996, J. Radioanal. Nucl. Chem., 202, 201.

    Article  CAS  Google Scholar 

  • LIN, X., HENKELMANN, R., 2002, J. Radioanal. Nucl. Chem., 251, 197.

    Article  CAS  Google Scholar 

  • LINDSTROM, R. M., LINDSTROM, D. J., SLABACK, L. A., LANGLAND, J. K., 1990, Nucl. Instrum. Meth. A, 299, 425.

    Article  Google Scholar 

  • LINDSTROM, R. M., 1994, Biol. Trace Elem. Res., 43–44, 597.

    Article  Google Scholar 

  • MA, R., STAMATELATOS, I. E., YASUMURA, S., 2000, Ann. NY Acad. Sci., 904, 148.

    Article  CAS  Google Scholar 

  • MACKEY, E. A., GORDON, G. E., LINDSTROM, R. M., ANDERSON, D. L., 1991, Anal. Chem., 63, 288.

    Article  CAS  Google Scholar 

  • MACKEY, E. A., ANDERSON, D. L., Chen-Mayer, H., DOWNING, R. G., GREENBERG, R. R., LAMAZE, G. P., LINDSTROM, R. M., MILDNER, D. F. R., PAUL, R. L., 1998, J. Radioanal. Nucl. Chem., 203, 413.

    Google Scholar 

  • MOLNÁR, G. L., LINDSTROM, R. M., 1998, Nuclear Methods in Mineralogy and Geology, edited by A. Vértes, S. Nagy, and K. Süvegh (New York: Plenum), Chapter 3, pp. 145–164.

    Google Scholar 

  • MOLNÁR, G. L., (editor), 2003, Handbook of Prompt Gamma Activation Analysis with Neutron Beams (Dordrecht: Kluwer Acad. Publishers).

    Google Scholar 

  • MORGAN, W. D., 2000, Ann. NY Acad. Sci., 904, 128.

    Article  CAS  Google Scholar 

  • MUGHABGHAB, S. F., DIVADEENAM, M., HOLDEN, N. E., 1981, Neutron Cross Sections, Vol. 1, Part A (New York: Academic Press).

    Google Scholar 

  • MUGHABGHAB, S. F., 1984, Neutron Cross Sections, Vol. 1, Part B (New York: Academic Press).

    Google Scholar 

  • NADKARNI, R. A., MORRISON, G. H., 1977, J. Radioanal. Nucl. Chem., 38, 435.

    CAS  Google Scholar 

  • NORMAN, B. R., BECKER, D. A., 1999, J. Radioanal. Nucl. Chem., 245(1), 91.

    Article  Google Scholar 

  • OECD, 1994, Table of Simple Integral Neutron Cross Section Data from JEF-2.2, ENDF/B-VI, JENDL-3.2, BROND-2 and CENDL-2, JEF Report 14 (Paris: OECD Nuclear Energy Agency).

    Google Scholar 

  • OHDE, S., 1998, J. Radioanal. Nucl. Chem., 237(1–2), 51.

    Article  CAS  Google Scholar 

  • OLARIU, A., CONSTANTINESCU, M., CONSTANTINESCU, O., BADICA, T, POPESCU, I. V., BESLIU, C., LEAHU, D., 1999, J. Radioanal. Nucl. Chem., 240(1), 261.

    Article  CAS  Google Scholar 

  • ONDOV, J. M., DODD, J. A., TUNCEL, G., 1990, Aerosol Sci. Technol., 13, 249.

    Google Scholar 

  • PARK, K. S., KIM, N. B., KIM, Y. S., LEE, K. Y., CHOI, H. W., YOON, Y. Y., 1988, J. Radioanal. Nucl. Chem., 123, 585.

    Article  CAS  Google Scholar 

  • PARR, R. M., 1999, J. Radioanal. Nucl. Chem., 244(1), 17.

    Article  Google Scholar 

  • PARRY, S. J., ASIF, M., SINCLAIR, I. W., 1988, J. Radioanal. Nucl. Chem., 123, 593.

    Article  CAS  Google Scholar 

  • PARRY, S. J., BENNETT, B. A., BENZING, R., LALLY, A. E., BIRCH, C. P., FULKER, M. J., 1995, The Science of the Total Environment, 173/174, 351.

    Article  CAS  Google Scholar 

  • PARRY, S. J., GLOVER, S. E., QU, H., LaMont, S. P., GRIMM, C. A., FILBY, R. H., 2001, J. Radioanal. Nucl. Chem., 248(1), 137.

    Article  CAS  Google Scholar 

  • PAUL, R. L., 1998, J. Radioanal. Nucl. Chem., 234(1–2), 55.

    Article  CAS  Google Scholar 

  • PAUL, R. L., 1998, J. Radioanal. Nucl. Chem., 240(1), 261.

    Google Scholar 

  • PAUL, R. L., 1999, J. Radioanal. Nucl. Chem., 245(1), 11.

    Article  Google Scholar 

  • PAUL, R. L., 2002, Am. Lab., 34, 15.

    CAS  Google Scholar 

  • PIETRA, R., SABBIONI, E., GALLORINI, M., ORVINI, E., 1986, J. Radioanal. Nucl. Chem., 102, 69.

    Article  CAS  Google Scholar 

  • POMME, S., ALZETTA, J. P., UYTTENHOVE, J., DENECKE, B., ARANA, G., ROBOUCH, P., 1999, Nucl. Instrum. Meth. Phys. Res. A, 422, 388.

    Article  CAS  Google Scholar 

  • RIETZ, B., HEYDORN, K., 1993, J. Radioanal. Nucl. Chem., 174, 49.

    Article  CAS  Google Scholar 

  • RIOS-MARTINEZ, C., UNLU, K., WEHRING, B. W., 1998, J. Radioanal. Nucl. Chem., 234, 119.

    Article  CAS  Google Scholar 

  • ROSMAN, K. J. R., TAYLOR, P. D. P., 1998, J. Phys. Chem. Ref. Data, 27, 1275–1287.

    Article  CAS  Google Scholar 

  • ROUCHAUD, J. C., FEDOROFF, M., REVEL, G. J., 1977, J. Radioanal. Nucl. Chem., 38, 185.

    CAS  Google Scholar 

  • ROUCHAUD, J. C., FEDOROFF, M., REVEL, G., 1980, Journal of Radioanalytical Chemistry, 55, 283.

    CAS  Google Scholar 

  • SAMSAHL, K., 1966, Nukleonik, 8, 252.

    CAS  Google Scholar 

  • SCHMID, W., KRIVAN, V., 1986, Anal. Chem., 58, 1468.

    Article  CAS  Google Scholar 

  • SCHUHMACHER, J., MAIER-BORST, W., HAUSER, H., 1977, J. Radioanal. Nucl. Chem., 37, 503.

    CAS  Google Scholar 

  • SHANI, G., 1990, Activation Analysis, Vol. 2, edited by Z. B. Alfassi (Boca Raton: CRP Press), Chapter 5, pp. 239–297.

    Google Scholar 

  • SHOOP, D. M., BLOTZKY, A. J., RACK, E. P., 1998, J. Radioanal. Nucl. Chem., 236(1–2), 103.

    Article  CAS  Google Scholar 

  • SIMONITS, A., DE CORTE, F., HOSTE, J., 1975, J. Radioanal. Chem., 24, 31.

    CAS  Google Scholar 

  • SIMONITS, A., MOENS, L., De Corte, F., De Wispelaere, A., ELEK, A., HOSTE, J., 1980, J. Radioanal. Chem., 60, 461.

    CAS  Google Scholar 

  • ST-PIERRE, J., KENNEDY, G., 1998, J. Radioanal. Nucl. Chem., 234, 51–54.

    Article  CAS  Google Scholar 

  • STRIJCKMANS, K., 1994, Chemical Analysis by Nuclear Methods, edited by Z. B. Alfassi (Chichester: John Wiley & Sons, Ltd.), Chapter 10, pp. 215–252.

    Google Scholar 

  • STUDIER, M. H., 1962, J. Inorg. Nucl. Chem., 24, 755.

    Article  Google Scholar 

  • SUZUKI, N., 1990, Activation Analysis, Vol. 1, edited by Z. B. Alfassi (Boca Raton: CRP Press), Chapter 9, pp. 146–164.

    Google Scholar 

  • SZIDAT, S., SCHMIDT, A., HANDL, J., JAKOB, D., MICHEL, R., SYNAL, H. A., SUTER, M., 2000, J. Radioanal. Nucl. Chem., 244(1), 45.

    Article  CAS  Google Scholar 

  • THEIMER, K. H., KRIVAN, V., 1990, Anal. Chem., 62, 2722.

    Article  CAS  Google Scholar 

  • UPP, D. L., KEYSER, R. M., GEDCKE, D. A., TWOMEY, T. R., BINGHAM, R. D., 2001, J. Radioanal. Nucl. Chem., 248, 377.

    Article  CAS  Google Scholar 

  • VIM, 1993, International Vocabulary of Basic and General Terms in Metrology (Geneva, Switzerland: International Organization for Standardization).

    Google Scholar 

  • WESTPHAL, G. P., 1981, J. Radioanal. Chem., 61, 111.

    Google Scholar 

  • YONEZAWA, C., 2001, Non-Destructive Elemental Analysis, edited by Z. B. Alfassi (Oxford: Blackwell Sciences, Ltd.), Chapter 2, pp. 58–114.

    Google Scholar 

  • ZAIDI, J. H., ARIF, M., FATIMA, I., AHMED, S., QURESHI, I. H., 1999a, J. Radioanal. Nucl. Chem., 241(1), 123.

    Article  CAS  Google Scholar 

  • ZAIDI, J. H., WAHEED, S., AHMED, S., 1999b, J. Radioanal. Nucl. Chem., 242(2), 259.

    Article  CAS  Google Scholar 

  • ZEISLER, R., 1986, J. Res. Natl. Inst. Stand. Technol., 91, 75.

    Google Scholar 

  • ZEISLER, R., 2000, J. Radioanal. Nucl. Chem., 244, 507.

    Article  CAS  Google Scholar 

  • ZEISLER, R., GREENBERG, R. R., 1982, J. Radioanal. Chem., 75, 27.

    CAS  Google Scholar 

  • ZEISLER, R., GUINN, V. P., 1990, Nuclear Analytical Methods in the Life Sciences (Clifton: The Humana).

    Google Scholar 

  • ZEISLER, R., LINDSTROM, R. M., GREENBERG, R. R., 2003, Instrumental Neutron Activation Analysis, a Valuable Link in Chemical Metrology, Proc. Sixth Int. Conf. on Methods And Applications of Radioanalytical Chemistry-MARC VI, Kailua-Kona, Hawaii, USA, April 7–11, 2003 (to be published in J. Radioanal. Nucl. Chem.)

    Google Scholar 

  • ZEISLER, R., STONE, S. F., SANDERS, R. W., 1988, Anal. Chem., 60, 2760.

    Article  CAS  Google Scholar 

  • ZEISLER, R., YOUNG, I., 1987, J. Radioanal. Nucl. Chem., 113, 97.

    Article  CAS  Google Scholar 

  • ZIEGLER, J. F., 1977, The Stopping and Ranges of Ions in Matter (New York: Pergamon Press Inc.).

    Google Scholar 

  • ZIEGLER, J. F., 2003, public domain computer code SRIM-2003 (IBM-Research, Yorktown, NY 10598, USA).

    Google Scholar 

  • ZIEGLER, J. F., COLE, G. W., BAGLIN, J. E. E., 1972, J. Appl. Phys., 43, 3809.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

(2003). Activation Analysis . In: Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-387-30682-X_26

Download citation

  • DOI: https://doi.org/10.1007/0-387-30682-X_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-1305-8

  • Online ISBN: 978-0-387-30682-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics