Handbook of Real-Time Computing pp 1-22 | Cite as
Outer Synchronization of Partially Coupled Dynamical Networks via Pinning Impulsive Controllers
Living reference work entry
First Online:
Abstract
This chapter presents an analytical study of outer synchronization of partially coupled dynamical networks via pinning impulsive controller. At first, more realistic drive-response partially coupled networks are established. Then, based on the regrouping method, some efficient and less conservative synchronization criteria are derived and developed in terms of average impulsive interval. The results show that, by impulsively controlling a crucial fraction of nodes in the response network, the outer synchronization can be achieved. Finally, illustrated examples are given to verify the effectiveness of the proposed strategy.
Keywords
Complex dynamical networks Partial coupling Outer synchronization Pinning impulsive control Average impulsiveReferences
- A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)MathSciNetCrossRefGoogle Scholar
- A.L. Barabási, R. Albert, H. Jeong, Mean-field theory for scale-free random networks. Phys. A Stat. Mech. Appl. 272(1), 173–187 (1999)CrossRefGoogle Scholar
- J. Cao, P. Li, W. Wang, Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353(4), 318–325 (2006)CrossRefGoogle Scholar
- T. Chen, X. Liu, W. Lu, Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I Regul. Pap. 54(6), 1317–1326 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- W. Chen, Z. Jiang, J. Zhong, X. Lu, On designing decentralized impulsive controllers for synchronization of complex dynamical networks with nonidentical nodes and coupling delays. J. Frankl. Inst. 351(8), 4084–4110 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- A.B. Horne, T.C. Hodgman, H.D. Spence, A.R. Dalby, Constructing an enzyme-centric view of metabolism. Bioinformatics 20(13), 2050–2055 (2004)CrossRefGoogle Scholar
- A. Hu, Z. Xu, Pinning a complex dynamical network via impulsive control. Phys. Lett. A 374(2), 186–190 (2009)zbMATHCrossRefGoogle Scholar
- J. Hu, J. Liang, J. Cao, Synchronization of hybrid-coupled heterogeneous networks: pinning control and impulsive control schemes. J. Frankl. Inst. 351(5), 2600–2622 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- C. Hua, C. Ge, X. Guan, Synchronization of chaotic Lur’e systems with time delays using sampled-data control. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1214–1221 (2015)MathSciNetCrossRefGoogle Scholar
- C. Huang, D.W.C. Ho, J. Lu, J. Kurths, Partial synchronization in stochastic dynamical networks with switching communication channels. Chaos Interdisciplinary J. Nonlinear Sci. 22(2), 023108 (2012a)MathSciNetzbMATHCrossRefGoogle Scholar
- C. Huang, D.W.C. Ho, J. Lu, Partial-information-based distributed filtering in two-targets tracking sensor network. IEEE Trans. Circuits Syst. I Regul. Pap. 59(4), 820–832 (2012b)MathSciNetCrossRefGoogle Scholar
- M. Newmann, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefGoogle Scholar
- M.E.J. Newman, D.J. Watts, Scaling and percolation in the small-world network model. Phys. Rev. E 60(6), 7332–7342 (1999)CrossRefGoogle Scholar
- V.L. Krinsky, V.N. Biktashev, I.R. Efimov, Autowave principles for parallel image processing. Phys. D Nonlinear Phenom. 49(1), 247–253 (1991)CrossRefGoogle Scholar
- X. Li, X. Wang, G. Chen, Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I Regul. Pap. 51(10), 2074–2087 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- C. Li, W. Sun, J. Kurths, Synchronization between two coupled complex networks. Phys. Rev. E 76(4), 046204 (2007)Google Scholar
- C. Li, S. Wu, G. Feng, X. Liao, Stabilizing effects of impulses in discrete-time delayed neural networks. IEEE Trans. Neural Netw. 22(2), 323–329 (2011)CrossRefGoogle Scholar
- L. Li, D.W.C. Ho, J. Lu, A unified approach to practical consensus with quantized data and time delay. IEEE Trans. Circuits Syst I Regul. Pap. 60(10), 2668–2678 (2013)MathSciNetCrossRefGoogle Scholar
- X. Liu, Stability results for impulsive differential systems with applications to population growth models. Dyn. Stab. Syst. 9(2), 163–174 (1994)MathSciNetzbMATHGoogle Scholar
- B. Liu, W. Lu, T. Chen, Pinning consensus in networks of multiagents via a single impulsive controller. IEEE Trans. Neural Netw. Learn. Syst. 24(7), 1141–1149 (2013)CrossRefGoogle Scholar
- J. Lu, J. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling. Nonlinear Dyn. 53(1–2), 107–115 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- W. Lu, T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems. Phys. D Nonlinear Phenom. 213(2), 214–230 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- J. Lu, D.W.C. Ho, Globally exponential synchronization and synchronizability for general dynamical networks. IEEE Trans. Syst. Man Cybern. Part B Regul. Pap. 40(2), 350–361 (2010)CrossRefGoogle Scholar
- J. Lu, D.W.C. Ho, L. Wu, Exponential stabilization in switched stochastic dynamical networks. Nonlinearity 22, 889–911 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- J. Lu, D. W. C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- J. Lu, J. Kurths, J. Cao, N. Mahdavi, C. Huang, Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 285–292 (2012)CrossRefGoogle Scholar
- J. Lu, D.W.C. Ho, J. Cao, J. Kurths, Single impulsive controller for globally exponential synchronization of dynamical networks. Nonlinear Anal. Real World Appl. 14(1), 581–593 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- J. Lu, J. Zhong, Y. Tang, T. Huang, J. Cao, J. Kurths, Synchronization in output-coupled temporal Boolean networks. Sci. Rep. 4, 6292–6303 (2014)CrossRefGoogle Scholar
- J.Q. Lu, C.D. Ding, J.G. Lou, J.D. Cao, Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J. Frankl. Inst. 352, 5024–5041 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- S.H. Strogatz, Exploring complex networks. Nature 410(6825), 268–276 (2001)zbMATHCrossRefGoogle Scholar
- W. Sun, J. Lü, S. Chen, X. Yu, Pinning impulsive control algorithms for complex network. Chaos Interdisciplinary J. Nonlinear Sci. 24(1), 013141 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- H. Tang, L. Chen, J. Lu, K.T. Chi, Adaptive synchronization between two complex networks with nonidentical topological structures. Phys. A Stat. Mech. Appl. 387(22), 5623–5630 (2008)CrossRefGoogle Scholar
- Y. Tang, W.K. Wong, J.A. Fang, Pinning impulsive synchronization of stochastic delayed coupled networks. Chin. Phys. B 20(4), 040513 (2011)CrossRefGoogle Scholar
- Y. Tang, H. Gao, J. Lu, J. Kurths, Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization method. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1804–1815 (2014a)CrossRefGoogle Scholar
- Y. Tang, Z. Wang, H. Gao, H. Qiao, J. Kurths, On controllability of neuronal networks with constraints on the average of control gains. IEEE Trans. Cybern. 44(12), 2670–2681 (2014b)CrossRefGoogle Scholar
- X.F. Wang, Complex networks: topology, dynamics and synchronization. Int. J. Bifurcation Chaos 12(05), 885–916 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- X. Wang, G. Chen, Pinning control of scale-free dynamical networks. Phys. A Stat. Mech. Appl. 310(3), 521–531 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. (2015). https://doi.org/10.1109/TNNLS.2015.2411671 Google Scholar
- D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)zbMATHCrossRefGoogle Scholar
- W. Wu, Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling. IEEE Trans. Circuits Syst. Express Briefs 52(5), 282–286 (2005)CrossRefGoogle Scholar
- C. Wu, L.O. Chua, Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 42(8), 430–447 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- X. Wu, W. Zheng, J. Zhou, Generalized outer synchronization between complex dynamical networks. Chaos Interdisciplinary J. Nonlinear Sci. 19(1), 013109 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- W. Yu, G. Chen, J. Lü, On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- T. Yang, Impulsive systems and control: theory and applications (Nova Science Publishers, Inc., New York, 2001)Google Scholar
- Z.C. Yang, D. Xu, Stability analysis of delay neural networks with impulsive effects. IEEE Trans. Circuits Syst. II Express Briefs 52(8), 517–521 (2005)CrossRefGoogle Scholar
- X. Yang, J. Cao, J. Lu, Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control. IEEE Trans. Circuits Syst. I Regul. Pap. 59(2), 371–384 (2012)MathSciNetCrossRefGoogle Scholar
- X. Yang, J. Cao, J. Lu, Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans. Circuits Syst I. Regul. Pap. 60(2), 363–376 (2013)MathSciNetCrossRefGoogle Scholar
- A. Zheleznyak, L.O. Chua, Coexistence of low-and high-dimensional spatiotemporal chaos in a chain of dissipatively coupled Chua’s circuits. Int. J. Bifurcation Chaos 4(03), 639–674 (1994)zbMATHCrossRefGoogle Scholar
- J. Zhou, Q. Wu, Exponential stability of impulsive delayed linear differential equations. IEEE Trans. Circuits Syst. II Express Briefs 56(9), 744–748 (2009)CrossRefGoogle Scholar
- W. Zhang, Y. Tang, Q. Miao, W. Du, Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects. IEEE Trans. Neural Netw. Learn. Syst. 24(8), 1316–1326 (2013)CrossRefGoogle Scholar
- J. Zhong, J. Lu, Y. Liu, J. Cao, Synchronization in an array of output-coupled Boolean networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2288–2294 (2014)CrossRefGoogle Scholar
- Z. Zuo, J. Zhang, Y. Wang, Adaptive fault tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems. IEEE Trans. Ind. Electron. 62(6), 3923–3931 (2015)Google Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2019