Advertisement

Optical Fibers

  • Anne Schwarz-PfeifferEmail author
  • Viktorija Mecnika
  • Markus Beckers
  • Thomas Gries
  • Stefan Jockenhoevel
Reference work entry

Abstract

Integrating optical fibers into textiles opens up a wide range of new, fascinating applications – starting from data transmission to sensory abilities, new lightening concepts, and advanced medical therapies.

This chapter gives first an overview on the working principle and light transmission mechanisms in optical fibers. It discusses different types of optical fiber materials, before it summarizes recent developments in processing these materials into textile structures. Finally different application fields are explored, which leads to highlighting future trends and potentials of optical fibers.

Keywords

Optical fibers Polymer optical fibers Glass fibers Refractive index Data transmission Light therapy Optical fiber sensors Photonic textiles 

References

  1. 1.
    Mitschke F (2005) Fibre optics: physics and technology. Elsevier, MunichGoogle Scholar
  2. 2.
    Ziemann O, Krauser J, Zamzow P, Daum W (2008) POF handbook: optical short range transmission systems. Springer, BerlinGoogle Scholar
  3. 3.
    Michaeli W (2006) Einführung in die Kunststoffverarbeitung. Hanser, MunichGoogle Scholar
  4. 4.
    Nalwa HS (2004) Polymer optical fibres. American Scientific Publishers, Stevenson RanchGoogle Scholar
  5. 5.
    Katoot MW (1999) Polymer optical fibres and process for manufacture thereof. US patent 5861129AGoogle Scholar
  6. 6.
    Hackenberg MR (2001) Untersuchungen zu Versagemechanismen von Kunststofflichtwellenleitern unter thermischer und mechanischer Last. Dissertation, UlmGoogle Scholar
  7. 7.
    Oscarsson L, Jacobsen Heimdal E, Lundell T, Peterson J (2009) Flat knitting of a light emitting textile with optical fibres. Autex ResJ 9:61–65Google Scholar
  8. 8.
    Eichhoff J, Hehl A, Jockenhoevel S, Gries T (2013) Textile fabrication technologies for embedding electronic functions into fibres, yarns and fabrics. In: Multidisciplinary know-how for smart-textiles developers. Woodhead Publishing, OxfordGoogle Scholar
  9. 9.
    Selm B, Gürel E, Rothmaier M, Rossi R, Scherer L (2010) Polymeric optical fiber fabrics for illumination and sensorial applications in textiles. J Intell Mater Syst Struct 21:1061–1071CrossRefGoogle Scholar
  10. 10.
    Park S, Jayaraman S (2001) Adaptive and responsive textile structures (ARTS). In: Smart Fibers, fabrics and clothing. Woodhead Publishing, CambridgeGoogle Scholar
  11. 11.
    Gopalsamy C, Park S, Rajamanickam R, Jayaraman S (1999) The Wearable Motherboard: the first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality 4(3):152–168Google Scholar
  12. 12.
    Cochrane C, Mordon SR, Lesage JC, Koncar V (2013) New design of textile light diffusers for photodynamic therapy. Mater Sci Eng C 33:1170–1175CrossRefGoogle Scholar
  13. 13.
    Khan T, Unternaehrer M, Buchholz J (2006) Performance of a contact textile-based light diffuser for photodynamic therapy. Photodiagnosis Photodyn Ther 3:51–60CrossRefGoogle Scholar
  14. 14.
    Mordon S, Cochrane C, Lesage JC, Koncar V (2011) Innovative engineering design of a textile light diffuser for photodynamic therapy. Photodiagnosis Photodyn Ther 8:142–143CrossRefGoogle Scholar
  15. 15.
    Medwow (2013) http://www.medwow.com. Accessed 30 Nov 2013
  16. 16.
    Gupta BD (2006) Fiber optic sensors - principles and applications. Jai Bharat Printing Press, New DelhiGoogle Scholar
  17. 17.
    Grattan KT, Sun T (2000) Fibre optic sensor technology: an overview. Sensors Actuators 82:40–61CrossRefGoogle Scholar
  18. 18.
    Lee B (2003) Review of the present status of optic fibre sensors. Opt Fibre Technol 9:57–79CrossRefGoogle Scholar
  19. 19.
    Chou C, Wu HT, Yu CJ (2007) Fibre-optic biosensors for antigen/antibody kinetic assays. SPIE Newsroom: Biomedical Optics and Medical ImagingGoogle Scholar
  20. 20.
    El-Sherif M (2005) Integration of fibre optic sensors and sensing networks into textile structures. In: Wearable electronics and photonics. Woodhead Publishing, CambridgeGoogle Scholar
  21. 21.
    Zhang B, Kahrizi M (2007) High-temperature resistance fiber Bragg Grating temperature sensor fabrication. IEEE Sensors J 7:586–591CrossRefGoogle Scholar
  22. 22.
    Mishra V, Singh N, Tiwari U, Kapur P (2011) Fiber grating sensors in medicine: current and emerging applications. Sensors Actuators A 167:279–290CrossRefGoogle Scholar
  23. 23.
    Lee CH, Lee J, Kim MK, Kim KT (2011) Characteristics of a fibre Bragg Grating temperature sensor using the thermal strain of an external tube. J Korean Phy Soc 59:3188–3191CrossRefGoogle Scholar
  24. 24.
    Li Q, Yang H, Li E, Liu Z, Wie K (2012) Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg Grating. Opt Express 20:11740–11752CrossRefGoogle Scholar
  25. 25.
    Kim KT, Kim IS, Lee CH, Lee J (2012) A temperature-insensitive cladding-etched fiber Bragg Grating using a liquid mixture with a negative thermo-optic coefficient. Sensors 12:7886–7892CrossRefGoogle Scholar
  26. 26.
    Khan I, Ahmed I (2012) Sensing principle analysis of FBG sensors. J Electric Electron Eng 1:1–6CrossRefGoogle Scholar
  27. 27.
    Zhan Q, Liu N, Fink T (2012) Fiber-optic pressure sensor based on π-phase-shifted Fiber Bragg Grating on side-hole fiber. Photon Technol Lett 24:1519–1523CrossRefGoogle Scholar
  28. 28.
    Sakai K, Nakagami G, Matsui N (2008) Validation and determination of the sensing area of the Kinotex sensor as part of development of a new matress with an interface pressure-sensing system. Bio Sci trends 2:36–43Google Scholar
  29. 29.
    Krebber K (2013) Smart technical textiles based on optical fiber technology. In: Current developments in optical fiber technology. InTech, Rijeka, pp 319–344Google Scholar
  30. 30.
    Rothmaier N, Luong MP, Clemens F (2008) Textile pressure sensor made flexible plastic optical fibers. Sensors 8:4318–4329CrossRefGoogle Scholar
  31. 31.
    Liehr S et al (2008) Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles. In: Photonics Europe. International Society for Optics and Photonics, pp 700302-700302–15Google Scholar
  32. 32.
    Zou X, Wu N, Tian Y (2013) Rapid miniature fiber optic pressure sensors for blast wave measurements. Opt Lasors Eng 51:134–139CrossRefGoogle Scholar
  33. 33.
    Wang W, Jiang X, Yu Q (2012) Temperature self-compensation fiber pressure sensor based on fiber Bragg Grating and Fabry-Perot interference multiplexing. Optics Commun 285:3466–3470CrossRefGoogle Scholar
  34. 34.
    Bremer K, Lewis E, Leen G (2011) Fabrication of an all-glass fibre optic pressure and temperature sensor. Proc Eurosensors 25:503–506Google Scholar
  35. 35.
    Pandey NK, Yadav BC (2007) Fiber optic pressure sensor and monitoring of structural defects. Optica Appl 27:57–63Google Scholar
  36. 36.
    Alwis L, Sun T, Grattan KTV (2013) Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress. Measurement 46:4052–4074CrossRefGoogle Scholar
  37. 37.
    Dunne L, Walsh P, Caulfield B (2007) A system for wearable monitoring of seated posture in computer users. In: 4th international workshop on wearable and implantable body sensor networks proceedings, Aachen/Germany, vol 13, pp 203–207Google Scholar
  38. 38.
    Fereira da Silva A, Rocha RP, Carmo JP, Correia JH (2013) Photonic sensors based on flexible materials with FBGs for use on biomedical applications. In: Current developments in optical fiber technology. InTech, Rijeka, pp 105–132Google Scholar
  39. 39.
    Grillet A (2007) Optical fibre sensors embedded into technical textile for healthcare. Tutorial on SFIT, 4th international workshop on wearable and implantable body sensor networks (BSN’07), AachenGoogle Scholar
  40. 40.
    Yokokawa M, Miyahara Y, Ikeda S (2010) Evaluation and application of optical fiber pressure sensor as a new real time respiration monitoring system for radiation therapy. In: Proceedings of the 52nd annual ASTRO meeting, San Diego, vol 78. p S673Google Scholar
  41. 41.
    Šprager S, Zazula D (2013) Detection of Heartbeat and Respiration from optical Interferometric signal by using wavelet transform. Comput Methods Programs Biomed 111:41–51CrossRefGoogle Scholar
  42. 42.
    Kingsley SA, Sriram S, Pollick A (2004) Photrodes (TM) for physiological sensing. In: Optical fibers and sensors for medical applications, In Biomedical Optics 2004. International Society for Optics and Photonics, Bellingham, vol IV, pp 158–166Google Scholar
  43. 43.
    Fernandes MS, Correia JH, Mendes PM (2013) Electro-optic acquisition system for ECG sensor applications. Sens Actuators A Phy 203:316–323CrossRefGoogle Scholar
  44. 44.
    Pasche S, Schyrr B, Wenger B (2013) Smart textiles with biosensing capabilities. Adv Sci Technol 80:129–135CrossRefGoogle Scholar
  45. 45.
    Renganathan B, Sastikumar D, Raj S, Ganesan AR (2014) Fiber optic gas sensors with vanadium oxide and Tungsten Nanoparticle coated cladding. Optics Commun 315:74–78CrossRefGoogle Scholar
  46. 46.
    Kudo H, Wang X, Suzuki Y (2012) Fiber-optic biochemical gas sensor (Bio-Sniffer) for sub-Ppb monitoring of formaldehyde vapor. Sens Actuators B 1:486–492CrossRefGoogle Scholar
  47. 47.
    Jiang H, Yang R, Tang X (2013) Multilayer fiber optic sensor for In Situ gas monitoring in harsh environments. Sens Actuators B 177:205–212CrossRefGoogle Scholar
  48. 48.
    Coyle S., Moriss D, Lau K (2009) Textile sensors to measure sweat pH and sweat-rate during exercise. In: Proceedings of 3rd international conference on pervasive computing technologies for healthcare, LondonGoogle Scholar
  49. 49.
    Neuhaeuser J, Wilkening M, Diehl-Schmidt J (2012) Different sADL day patterns recorded by an interaction-system based on radio modules. In: Ambient assisted living, Advanced technologies and societal change. Springer, Berlin, pp 95–105CrossRefGoogle Scholar
  50. 50.
    Torres-Solis J, Falk TH, Cahu T (2010) A review of indoor localization technologies: towards navigational assistance for topographical disorientation. In: Ambient intelligence. In-Tech, Rijeka, pp 51–84Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Anne Schwarz-Pfeiffer
    • 1
    Email author
  • Viktorija Mecnika
    • 2
  • Markus Beckers
    • 2
  • Thomas Gries
    • 2
  • Stefan Jockenhoevel
    • 2
  1. 1.Niederrhein University of Applied SciencesMönchengladbachGermany
  2. 2.RWTH Aachen UniversityAachenGermany

Personalised recommendations