Lipid-Coated Nanodrops and Microbubbles

  • Mark A. BordenEmail author
Living reference work entry


Lipid-coated microbubbles and nanodrops are used in many applications of biomedical ultrasound. They serve as ultrasound contrast agents, molecular imaging probes, targeted drug delivery vehicles, nucleic acid vectors, gas carriers, and enhancers of thermal ablation. Each application has a unique set of performance criteria – there is no “one size fits all” microbubble formulation. Rational design can be accomplished using the composition → processing → structure → property → performance paradigm first described by DH Kim for lipid-coated microbubbles over a decade ago. One notable example has been the synthesis of longer circulating microbubbles through centrifugal isolation of larger diameter microbubbles coated with long acyl chain phospholipids. The purpose of this chapter is to inform the reader of current knowledge of the effects of lipid composition and processing on microstructure, as well as the effects of microstructure on important physical properties, such as microbubble size and shell viscoelasticity. More research is necessary to further elucidate these interrelationships and to exploit them for innovative microbubble designs.


Lipid-coated microbubbles Rational design Nanodrop fabrication 


  1. 1.
    Borden MA (2014) Microbubble dispersions of natural lung surfactant. Curr Opin Colloid Interface Sci 19(5):480–489CrossRefGoogle Scholar
  2. 2.
    McCulley JP, Shine WE (2001) The lipid layer: the outer surface of the ocular surface tear film. Biosci Rep 21(4):407–418CrossRefGoogle Scholar
  3. 3.
    Goldberg BB, Liu J-B, Forsberg F (1994) Ultrasound contrast agents: a review. Ultrasound Med Biol 20(4):319–333CrossRefGoogle Scholar
  4. 4.
    de Jong N, Ten Cate FJ, Lancée CT, Roelandt JRTC, Bom N (1991) Principles and recent developments in ultrasound contrast agents. Ultrasonics 29(4):324–330CrossRefGoogle Scholar
  5. 5.
    Stride E, Saffari N (2003) Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H 217(6):429–447CrossRefGoogle Scholar
  6. 6.
    Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3(6):527–533CrossRefGoogle Scholar
  7. 7.
    Wilson SR, Burns PN (2010) Microbubble-enhanced US in body imaging: what role? Radiology 257(1):24–39CrossRefGoogle Scholar
  8. 8.
    Dayton PA, Rychak JJ (2007) Molecular ultrasound imaging using microbubble contrast agents. Front Biosci J Virtual Libr 12:5124–5142CrossRefGoogle Scholar
  9. 9.
    Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447CrossRefGoogle Scholar
  10. 10.
    Kim DH. Mechanical properties, microstructure, and specific adhesion of phospholipid monolayer-coated microbubbles. Thesis PhD DUKE Univ Source DAI-B 6101 P 471 Jul 2000 177 Pages [Internet]. 1999 Oct [cited 2015 May 22]; Available from
  11. 11.
    Israelachvili JN (2010) Intermolecular and surface forces. Academic, San Diego, 706 pGoogle Scholar
  12. 12.
    Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1998) Molecular thermodynamics of fluid-phase equilibria. Pearson Education, New Jersey, 1245 pGoogle Scholar
  13. 13.
    Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18(11):1505–1509CrossRefGoogle Scholar
  14. 14.
    Duncan PB, Needham D (2004) Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. Langmuir 20(7):2567–2578CrossRefGoogle Scholar
  15. 15.
    Kim DH, Costello MJ, Duncan PB, Needham D (2003) Mechanical properties and microstructure of polycrystalline phospholipid monolayer shells: novel solid microparticles. Langmuir 19(20):8455–8466CrossRefGoogle Scholar
  16. 16.
    Borden MA, Pu G, Runner GJ, Longo ML (2004) Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles. Colloids Surf B Biointerfaces 35(3-4):209–223CrossRefGoogle Scholar
  17. 17.
    Witten TA, Wang J, Pocivavsek L, Lee KYC (2010) Wilhelmy plate artifacts in elastic monolayers. J Chem Phys 132(4):046102CrossRefGoogle Scholar
  18. 18.
    Borden MA, Longo ML (2002) Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: effect of lipid hydrophobic chain length. Langmuir 18(24):9225–9233CrossRefGoogle Scholar
  19. 19.
    Borden MA, Longo ML (2004) Oxygen permeability of fully condensed lipid monolayers. J Phys Chem B 108(19):6009–6016CrossRefGoogle Scholar
  20. 20.
    Lee S, Kim DH, Needham D (2001) Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 2. Dynamics of phospholipid monolayer formation and equilibrium tensions at the water-air interface. Langmuir 17(18):5544–5550CrossRefGoogle Scholar
  21. 21.
    Kuhl TL, Leckband DE, Lasic DD, Israelachvili JN (1994) Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J 66(5):1479–1488CrossRefGoogle Scholar
  22. 22.
    Orozco-Alcaraz R, Kuhl TL (2012) Impact of membrane fluidity on steric stabilization by lipopolymers. Langmuir 28(19):7470–7475CrossRefGoogle Scholar
  23. 23.
    Chen CC, Borden MA (2011) The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials 32(27):6579–6587CrossRefGoogle Scholar
  24. 24.
    Klibanov AL (2005) Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem 16(1):9–17CrossRefGoogle Scholar
  25. 25.
    Dressaire E, Bee R, Bell DC, Lips A, Stone HA (2008) Interfacial polygonal nanopatterning of stable microbubbles. Science 320(5880):1198–1201CrossRefGoogle Scholar
  26. 26.
    Malmsten M (1995) Protein adsorption at phospholipid surfaces. J Colloid Interface Sci 172(1):106–115CrossRefGoogle Scholar
  27. 27.
    Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR (2003) Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29(12):1759–1767CrossRefGoogle Scholar
  28. 28.
    Borden MA, Caskey CF, Little E, Gillies RJ, Ferrara KW (2007) DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 23(18):9401–9408CrossRefGoogle Scholar
  29. 29.
    Borden MA, Martinez GV, Ricker J, Tsvetkova N, Longo M, Gillies RJ et al (2006) Lateral phase separation in lipid-coated microbubbles. Langmuir 22(9):4291–4297CrossRefGoogle Scholar
  30. 30.
    Lum AFH, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111(1-2):128–134CrossRefGoogle Scholar
  31. 31.
    Lentacker I, Smedt SCD, Sanders NN (2009) Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 5(11):2161–2170CrossRefGoogle Scholar
  32. 32.
    Dove JD, Murray TW, Borden MA (2013) Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles. Soft Matter 9(32):7743–7750CrossRefGoogle Scholar
  33. 33.
    Feinstein SB, Ten Cate FJ, Zwehl W, Ong K, Maurer G, Tei C et al (1984) Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 3(1):14–20CrossRefGoogle Scholar
  34. 34.
    Li MK, Fogler HS (1978) Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. J Fluid Mech 88(03):499–511CrossRefGoogle Scholar
  35. 35.
    Li MK, Fogler HS (1978) Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. J Fluid Mech 88(03):513–528CrossRefGoogle Scholar
  36. 36.
    Feshitan JA, Chen CC, Kwan JJ, Borden MA (2009) Microbubble size isolation by differential centrifugation. J Colloid Interface Sci 329(2):316–324CrossRefGoogle Scholar
  37. 37.
    Talu E (2007) Lipid-stabilized monodisperse microbubbles produced by flow focusing for use as ultrasound contrast agents and targeted drug delivery. ProQuest. 127 pGoogle Scholar
  38. 38.
    Gañán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27):274501CrossRefGoogle Scholar
  39. 39.
    Kim DH, Klibanov AL, Needham D (2000) The influence of tiered layers of surface-grafted poly(ethylene glycol) on receptor-ligand-mediated adhesion between phospholipid monolayer-stabilized microbubbles and coated glass beads. Langmuir 16(6):2808–2817CrossRefGoogle Scholar
  40. 40.
    Borden MA, Sarantos MR, Stieger SM, Simon SI, Ferrara KW, Dayton PA (2006) Ultrasound radiation force modulates ligand availability on targeted contrast agents. Mol Imaging 5(3):139–147Google Scholar
  41. 41.
    Sirsi SR, Borden MA (2014) State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 72:3–14CrossRefGoogle Scholar
  42. 42.
    Sheeran PS, Luois S, Dayton PA, Matsunaga TO (2011) Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 27(17):10412–10420CrossRefGoogle Scholar
  43. 43.
    Mountford PA, Sirsi SR, Borden MA (2014) Condensation phase diagrams for lipid-coated perfluorobutane microbubbles. Langmuir 30(21):6209–6218CrossRefGoogle Scholar
  44. 44.
    Mountford PA, Thomas AN, Borden MA (2015) Thermal activation of superheated lipid-coated perfluorocarbon drops. Langmuir 31(16):4627–4634CrossRefGoogle Scholar
  45. 45.
    Sheeran PS, Wong VP, Luois S, McFarland RJ, Ross WD, Feingold S et al (2011) Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. Ultrasound Med Biol 37(9):1518–1530CrossRefGoogle Scholar
  46. 46.
    Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA (2012) Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials 33(11):3262–3269CrossRefGoogle Scholar
  47. 47.
    Hoff L (2013) Acoustic characterization of contrast agents for medical ultrasound imaging. Springer, New Jersey, 218 pGoogle Scholar
  48. 48.
    Doinikov AA, Haac JF, Dayton PA (2009) Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations. Ultrasonics 49(2):263–268CrossRefGoogle Scholar
  49. 49.
    Sirsi S, Feshitan J, Kwan J, Homma S, Borden M (2010) Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice. Ultrasound Med Biol 36(6):935–948CrossRefGoogle Scholar
  50. 50.
    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S et al (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am 118(6):3499–3505CrossRefGoogle Scholar
  51. 51.
    Choi JJ, Feshitan JA, Baseri B, Wang S, Tung Y-S, Borden MA et al (2010) Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo. IEEE Trans Biomed Eng 57(1):145–154CrossRefGoogle Scholar
  52. 52.
    Chomas JE, Dayton P, May D, Ferrara K (2001) Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt 6(2):141–150CrossRefGoogle Scholar
  53. 53.
    van der Meer SM, Dollet B, Voormolen MM, Chin CT, Bouakaz A, de Jong N et al (2007) Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 121(1):648–656CrossRefGoogle Scholar
  54. 54.
    Dove JD, Borden MA, Murray TW (2014) Optically induced resonance of nanoparticle-loaded microbubbles. Opt Lett 39(13):3732CrossRefGoogle Scholar
  55. 55.
    Katiyar A, Sarkar K, Jain P (2009) Effects of encapsulation elasticity on the stability of an encapsulated microbubble. J Colloid Interface Sci 336(2):519–525CrossRefGoogle Scholar
  56. 56.
    Kwan JJ, Borden MA (2012) Lipid monolayer collapse and microbubble stability. Adv Colloid Interface Sci 183–184:82–99CrossRefGoogle Scholar
  57. 57.
    Kwan JJ, Borden MA (2012) Lipid monolayer dilatational mechanics during microbubble gas exchange. Soft Matter 8(17):4756–4766CrossRefGoogle Scholar
  58. 58.
    Garg S, Thomas AA, Borden MA (2013) The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials 34(28):6862–6870CrossRefGoogle Scholar
  59. 59.
    Chatterjee D, Sarkar K (2003) A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med Biol 29(12):1749–1757CrossRefGoogle Scholar
  60. 60.
    Sarkar K, Shi WT, Chatterjee D, Forsberg F (2005) Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J Acoust Soc Am 118(1):539–550CrossRefGoogle Scholar
  61. 61.
    Kwan JJ, Borden MA (2010) Microbubble dissolution in a multigas environment. Langmuir 26(9):6542–6548CrossRefGoogle Scholar
  62. 62.
    Mer VKL (2014) Retardation of evaporation by monolayers: transport processes. Academic, New York, 298 pGoogle Scholar
  63. 63.
    Sarkar K, Katiyar A, Jain P (2009) Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability. Ultrasound Med Biol 35(8):1385CrossRefGoogle Scholar
  64. 64.
    Katiyar A, Sarkar K (2010) Stability analysis of an encapsulated microbubble against gas diffusion. J Colloid Interface Sci 343(1):42–47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations