Advertisement

Ultrasonic Atomization

  • Susumu NiiEmail author
Reference work entry

Abstract

Ultrasound enhances dispersion of liquids into fine mist with a narrow size distribution. Such small liquid droplets and distributions are difficult to obtain with using conventional nozzles. Atomization occurs in the wide frequency range from 20 kHz to 10 MHz. Highlighted in this chapter is the phenomena occurring in MHz-range ultrasound because of the small mist size of submicrometer to several micrometers and enabling solute partitioning between mist and bulk liquid. The finding of surfactant enrichment in the mist brought a new aspect of separation in ultrasonic atomization. Targets of the separation range from ethanol, solid particles, and carbon nanotubes to rice wines. The chapter covers the basic mechanism of mist formation, solute-partitioning behavior, and recent topic of solid transfer into gas phase.

Keywords

Atomization, ultrasonic Application, mist Droplet formation Droplet formation Ethanol separation Solute partitioning Distillation, ultrasonically assisted Droplet formation Capillary wave hypotheses Cavitation theory Conjunction theory Mist application For preparing nanoparticles For transferring solids to gas phase Nanodroplets formation Solute partitioning Alcohol enrichment Carrier gas Droplet model Enrichment ratio Ethanol enrichment Fuel atomization Mass balance Surfactant transport Ultrasonic spray pyrolysis (USP) 

References

  1. 1.
    Wood WR, Loomis AL (1927) The physical and biological effects of high-frequency sound-waves of great intensity. Philos Mag 7:417–436CrossRefGoogle Scholar
  2. 2.
    Rajan R, Pandit AB (2001) Correlations to predict droplet size in ultrasonic atomization. Ultrasonics 39:235–255CrossRefGoogle Scholar
  3. 3.
    Dobre M, Bolle L (2002) Practical design of ultrasonic spray devices; experimental testing of several atomizer geometries. Exp Therm Fluid Sci 26:205–211CrossRefGoogle Scholar
  4. 4.
    Avvaru B, Patil MN, Gogate PR, Pandit AB (2006) Ultrasonic atomization: effect of liquid phase properties. Ultrasonics 44:146–158CrossRefGoogle Scholar
  5. 5.
    Donnelly TD, Hogan J, Mugler A, Schommer N, Schnbmehl M, Bernoff AJ, Forrest B (2004) An experimental study of micron-scale droplet aerosols produced via ultrasonic atomization. Phys Fluids 16:2843–2851CrossRefGoogle Scholar
  6. 6.
    Topp MN, Eisenklam P (1972) Industrial and medical uses of ultrasonic atomizers. Ultrasonics 10:127–133CrossRefGoogle Scholar
  7. 7.
    Qi A, Friend J, Yeo L, Morton D, McIntosh M, Spiccia L (2009) Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab Chip 9:2184–2193CrossRefGoogle Scholar
  8. 8.
    Rajapaksa A, Ho J, Qi A, Bischof R, Nguyen TH, Tate M, Piedrafita D, McIntosh MP, Yeo L, Meeusen E, Coppel R, Friend JR (2014) Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. Respir Res 15:60CrossRefGoogle Scholar
  9. 9.
    Ogihara T, Ookura T, Yanagawa T, Ogata N, Yoshida K (1991) Preparation of submicrometer spherical oxide powders and fibers by thermal spray decomposition using an ultrasonic mist atomizer. J Mater Chem 1:789–794CrossRefGoogle Scholar
  10. 10.
    Suh WH, Suslick KS (2005) Magnetic and porous nanospheres from ultrasonic spray pyrolysis. J Am Chem Soc 127:12007–12010CrossRefGoogle Scholar
  11. 11.
    Inukai A, Sakamoto N, Aono H, Sakurai O, Shinozaki K, Suzuki H, Wakiya N (2011) Synthesis and hyperthermia property of hydroxyapatite–ferrite hybrid particles by ultrasonic spray pyrolysis. J Magn Magn Mater 323:965–969CrossRefGoogle Scholar
  12. 12.
    Lang RJ (1962) Ultrasonic atomization of liquids. J Acoust Soc Am 34:6–8CrossRefGoogle Scholar
  13. 13.
    Lord Kelvin (Thomson W) (1871) On the equilibrium of vapor at a curved surface of liquid. Philos Mag 42:448–452Google Scholar
  14. 14.
    Rayleigh L (1892) On the instability of a cylinder of viscous liquid under capillary force. Philos Mag 34:145–154CrossRefGoogle Scholar
  15. 15.
    Yasuda K, Bando Y, Yamaguchi S, Nakamura M, Oda A, Kawase Y (2005) Analysis of concentration characteristics in ultrasonic atomization by droplet diameter distribution. Ultrason Sonochem 12:37–41CrossRefGoogle Scholar
  16. 16.
    Yano YF, Matsuura K, Fukazu T, Wakisaka A, Kobara H, Kaneko K, Kumagai A, Katsuya Y, Tanaka M (2007) Small-angle X-ray scattering measurement of a mist of ethanol nanodroplets: an approach to understanding ultrasonic separation of ethanol–water mixture. J Chem Phys 127:031101-1–031101-4CrossRefGoogle Scholar
  17. 17.
    Kobara H, Tamiya M, Wakisaka A, Fukazu T, Matsuura K (2010) Relationship between the size of mist droplets and ethanol condensation efficiency at ultrasonic atomization on ethanol–water mixtures. AIChE J 56:810–814Google Scholar
  18. 18.
    Sekiguchi K, Noshiroya D, Handa M, Yamamoto K, Sakamoto K, Namiki N (2010) Degradation of organic gases using ultrasonic mist generated from TiO2 suspension. Chemosphere 81:33–38CrossRefGoogle Scholar
  19. 19.
    Sollner K (1936) The mechanism of the formation of fogs by ultrasonic waves. Trans Faraday Soc 32:1532–1536CrossRefGoogle Scholar
  20. 20.
    Eknadiosyants OK (1968) Role of cavitation in the process of liquid atomization in an ultrasonic fountain. Sov Phys Acoust 14:107–111Google Scholar
  21. 21.
    Boguslavski YY, Eknadiosyants OK (1969) Physical mechanism of the acoustic atomization of a liquid. Sov Phys Acoust 15:14–21Google Scholar
  22. 22.
    Frohly J, Labouret S, Bruneel C, Looten-Baquet I, Torguet R (2000) Ultrasonic cavitation monitoring by acoustic noise power measurement. J Acoust Soc Am 108:2012–2020CrossRefGoogle Scholar
  23. 23.
    Harada H, Iwata N, Shiratori K (2009) Observation of multibubble sonoluminescence from water saturated with various gases during ultrasonic atomization. Jpn J Appl Phys 48:07GH01-1–07GH01-4CrossRefGoogle Scholar
  24. 24.
    Miller DL, Thomas RM (1993) Frequency dependence of cavitation activity in a rotation tube exposure system compared to the mechanical index. J Acoust Soc Am 93:3475–3480CrossRefGoogle Scholar
  25. 25.
    Barreras F, Amaveda H, Lozano A (2002) Transient high frequency ultrasonic atomization. Exp Fluids 33:405–413CrossRefGoogle Scholar
  26. 26.
    Tsuchiya K, Tanaka Y, Mori Y, Matsuura K (2009) Intensification of ultrasonic atomization process for ethanol separation and recovery. In: Proceedings of the 8th world congress of chemical engineering, Aug 23rd–27th 2009 Montreal, Paper no. 1795Google Scholar
  27. 27.
    Rassokhin DN (1998) Accumulation of surface-active solutes in the aerosol particles generated by ultrasound, J. Phys Chem B 102:4337–4341CrossRefGoogle Scholar
  28. 28.
    Takaya H, Nii S, Kawaizumi F (2005) Enrichment of surfactant from its aqueous solution using ultrasonic atomization. Ultrason Sonochem 12:483–487CrossRefGoogle Scholar
  29. 29.
    Jimmy B, Kentish S, Grieser F, Ashokkumar M (2008) Ultrasonic nebulization in aqueous solutions and the role of interfacial adsorption dynamics in surfactant enrichment. Langmuir 24:10133–10137CrossRefGoogle Scholar
  30. 30.
    Jimmy B, Kentish S, Ashokkumar M (2011) Dynamics of counterion binding during acoustic nebulisation of surfactant solutions. Ultrason Sonochem 18:958–962CrossRefGoogle Scholar
  31. 31.
    Suzuki A, Maruyama H, Seki H, Matsukawa Y, Inoue N (2006) Enrichment of amino acids by ultrasonic atomization. Ind Eng Chem Res 45:830–833CrossRefGoogle Scholar
  32. 32.
    Fuse T, Kobayashi N, Hasatani M (2003) Performance of flammability and NOx emission in premixed oil burner using ultrasonic atomization. J Chem Eng Jpn 36:852–859CrossRefGoogle Scholar
  33. 33.
    Fuse T, Hirota Y, Kobayashi N, Hasatani M (2005) Characteristics of selective atomization of polar/nonpolar substances in an oleosus solvent with ultrasonic irradiation. J Chem Eng Jpn 38:67–73CrossRefGoogle Scholar
  34. 34.
    Sato M, Matsuura K, Fujii T (2001) Ethanol separation from ethanol–water solution by ultrasonic atomization and its proposed mechanism based on parametric decay instability of capillary wave. J Chem Phys 114:2382–2386CrossRefGoogle Scholar
  35. 35.
    Nii S, Matsuura K, Fukazu T, Toki M, Kawaizumi F (2006) A novel method to separate organic compounds through ultrasonic atomization. Chem Eng Res Des 84:412–415CrossRefGoogle Scholar
  36. 36.
    Matsuura K, Kobayashi M, Hirotsune M, Sato M, Sasaki H, Shimizu K (1995) New separation technique under normal temperature and pressure using ultrasonic atomization. Jpn Soc Chem Eng Symp Series 46:44–49Google Scholar
  37. 37.
    Kirpalani DM, Toll F (2002) Revealing the physicochemical mechanism for ultrasonic separation of alcohol–water mixtures. J Chem Phys 117:3874–3877CrossRefGoogle Scholar
  38. 38.
    Suzuki K, Kirpalani DM, Nii S (2011) Influence of cavitation on ethanol enrichment in an ultrasonic atomization system. J Chem Eng Jpn 44:616–622CrossRefGoogle Scholar
  39. 39.
    Suzuki K, Kirpalani DM, McCracken TW (2006) Experimental investigation of ethanol enrichment behavior in batch and continuous feed ultrasonic atomization systems. Chem Eng Technol 29:44–49CrossRefGoogle Scholar
  40. 40.
    Suzuki K, McCracken TW, Kirpalani DM (2008) Perspectives on intensification of ethanol-water separation process in a high frequency ultrasound system. J Chem Eng Jpn 41:855–861CrossRefGoogle Scholar
  41. 41.
    Spotar S, Rahman A, Gee OC, Jun KK, Manickam S (2015) A revisit to the separation of a binary mixture of ethanol-water using ultrasonic distillation as a separation process. Chem Eng Process 87:45–50CrossRefGoogle Scholar
  42. 42.
    Yasuda K, Mochida K, Asakura Y, Koda S (2014) Separation characteristics of alcohol from aqueous solution by ultrasonic atomization. Ultrason Sonochem 21:2026–2031CrossRefGoogle Scholar
  43. 43.
    Li ZX, Lu JR, Styrkas DA, Thomas RK, Rennie AR, Penfold J (1993) The structure of the surface of ethanol-water mixtures. Mol Phys 80:925–939CrossRefGoogle Scholar
  44. 44.
    Yano YF (2005) Correlation between surface and bulk structures alcohol-water mixtures. J Colloid Interface Sci 284:255–259CrossRefGoogle Scholar
  45. 45.
    Bermudez-Salguero C, Gracia-Fadrique J (2015) Gibbs excess and the calculation of the absolute surface composition of liquid binary mixtures. J Phys Chem B 119:5598–5608CrossRefGoogle Scholar
  46. 46.
    Wakisaka A, Matsuura K (2006) Microheterogeneity of ethanol–water binary mixtures observed at the cluster level. J Mol Liq 129:25–32CrossRefGoogle Scholar
  47. 47.
    Suzuki K, Arashi K, Nii S (2012) Determination of droplet and vapor ratio of ultrasonically-atomized aqueous ethanol solution. J Chem Eng Jpn 45:337–342CrossRefGoogle Scholar
  48. 48.
    Flannigan DJ, Suslick KS (2007) Emission from electronically excited metal atoms during single-bubble sonoluminescence. Phys Rev Lett 99:134301CrossRefGoogle Scholar
  49. 49.
    Xu H, Eddingsaaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061CrossRefGoogle Scholar
  50. 50.
    Mahdi T, Ahmad A, Ripin A, Abdullah TAT, Nasef MM, Ali MW (2015) Mathematical modeling of a single stage ultrasonically assisted distillation process. Ultrason Sonochem 24:184–192CrossRefGoogle Scholar
  51. 51.
    Komatsu N, Shimawaki T, Aonuma S, Kimura T (2006) Ultrasonic isolation of toroidal aggregates of single-walled carbon nano tubes. Carbon 44:2091–2093CrossRefGoogle Scholar
  52. 52.
    Komatsu N (2009) Novel and practical separation processes for fullerenes, carbon nanotubes and nanodiamonds. J Jpn Pet Inst 52:73–80CrossRefGoogle Scholar
  53. 53.
    Sekiguchi K, Yamamoto K, Sakamoto K (2008) Photocatalytic degradation of gaseous toluene in an ultrasonic mist containing TiO2 particles. Cata Commun 9:281–285CrossRefGoogle Scholar
  54. 54.
    Suzuki K, Hisaeda J, Nii S (2012) Application of ultrasonic atomization for fractionating particles in suspensions. J Chem Eng Japan 45:114–118CrossRefGoogle Scholar
  55. 55.
    Nii S, Oka N (2014) Size-selective separation of submicron particles in suspensions with ultrasonic atomization. Ultrason Sonochem 21:2032–2036CrossRefGoogle Scholar
  56. 56.
    Messing GL, Zhang S-C, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726CrossRefGoogle Scholar
  57. 57.
    Kinoshita T, Adachi M (2015) Submicron particle synthesis of Gd0.1Ce0.9O1.95, NiO–Gd0.1Ce0.9O1.95 and La0.8Sr0.2CoO3 by ultrasonic spray pyrolysis. J Chem Eng Japan 48:238–244CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Huff LA, Gewirth AA, Suslick KS (2015) Synthesis of manganese oxide microspheres by ultrasonic spray pyrolysis and their application as supercapacitors. Part Part Syst Charact 32:899–906CrossRefGoogle Scholar
  59. 59.
    Guo Y-X, Wu P, Cheng W-J (2015) Effect of boron doping on the optoelectronic properties of nanostructure SnO2 thin film by ultrasonic spray pyrolysis on quartz substrate. J Mater Sci: Mater Electron 26:4922–4929Google Scholar
  60. 60.
    Das H, Sakamoto N, Aono H, Shinozaki K, Suzuki H, Wakiya N (2015) Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application. J Magn Magn Mater 392:91–100CrossRefGoogle Scholar
  61. 61.
    Skrabalak SE, Suslick KS (2006) Porous carbon powders prepared by ultrasonic spray pyrolysis. J Am Chem Soc 128:12642–12643CrossRefGoogle Scholar
  62. 62.
    Arif AF, Balgis R, Ogi T, Mori T, Okuyama K (2015) Experimental and theoretical approach to evaluation of nanostructured carbon particles derived from phenolic resin via spray pyrolysis. Chem Eng J 271:79–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Kagoshima UniversityKagoshimaJapan

Personalised recommendations