Encyclopedia of Geropsychology

2017 Edition
| Editors: Nancy A. Pachana

Cognitive and Brain Plasticity in Old Age

  • Franka Thurm
  • Shu-Chen Li
Reference work entry
DOI: https://doi.org/10.1007/978-981-287-082-7_146


Aging; Cognition; Dopamine; Plasticity; Stimulation; Training

The Challenge of Demographic Change

A recent report from the World Health Organization on world population prospects forecasted an unprecedented demographic shift in human history: the number of people aged 65 or older will outnumber children under the age of 5 before 2020. In most developed countries, the average life expectancy at birth has increased from about 45 years in the 1800s to above 75 years in the twentieth century. This remarkable 30-year gain in physical health is, however, not necessarily accompanied by cognitive fitness and mental well-being into old age. Faced with the rapid growth of aging populations worldwide and an ever-expanding prevalence of dementia and other aging-related neuropathologies, understanding basic mechanisms of the still preserved cognitive and brain plasticity in old age in order to uphold and delay functional declines of the aging mind has become a key challenge for cognitive...

This is a preview of subscription content, log in to check access.


  1. Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. The Journal of Neuroscience, 25, 4217–4221.PubMedCrossRefGoogle Scholar
  2. Agid, Y., Ruberg, M., Javoy-Agid, F., Hirsch, E., Raisman-Vozari, R., Vyas, S., Faucheux, B., Michel, P., Kastner, A., Blanchard, V., Damier, P., Villares, J., & Zhang, P. (1993). Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? In H. Narabayashi, T. Nagatsu, N. Yanagisawa, & Y. Mizuno (Eds.), Parkinson’s disease: From basic research to treatment (Advances in Neurology, Vol. 60, pp. 148–164). New York: Raven.Google Scholar
  3. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine and cognition: Current status and future prospects. Neuroscience and Biobehavioral Reviews, 30, 791–807.PubMedCrossRefGoogle Scholar
  4. Bäckman, L., Nyberg, L., Soveri, A., Johansson, J., Andersson, M., Dahlin, E., Neely, A. S., Virta, J., Laine, M., & Rinne, J. O. (2011). Effects of working-memory training on striatal dopamine release. Science, 333, 718.PubMedCrossRefGoogle Scholar
  5. Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the dynamics between growth and decline. Developmental Psychology, 23, 611–626.CrossRefGoogle Scholar
  6. Baltes, P. B., Reuter-Lorenz, P. A., & Rösler, F. (2006). Lifespan development and the brain. Cambridge University Press, Cambridge, RU, 11, 39–62. [Zeilenumbruch].Google Scholar
  7. Barnes, D. E., Yaffe, K., Belfor, N., Jagust, W. J., DeCarli, C., Reed, B. R., & Kramer, J. H. (2009). Computer-based cognitive training for mild cognitive impairment: Results from a pilot randomized, controlled trial. Alzheimer Disease and Associated Disorders, 23, 205–210.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Belleville, S., Gilbert, B., Fontaine, F., Gagnon, L., Ménard, E., & Gauthier, S. (2006). Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: Evidence from a cognitive intervention program. Dementia and Geriatric Cognitive Disorders, 22, 486–499.PubMedCrossRefGoogle Scholar
  9. Boggio, P. S., Ferrucci, R., Rigonatti, S. P., Covre, P., Nitsche, M., Pascual-Leone, A., & Fregni, F. (2006). Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. Journal of the Neurological Sciences, 249, 31–38.PubMedCrossRefGoogle Scholar
  10. Brehmer, Y., Li, S. C., Müller, V., von Oertzen, T., & Lindenberger, U. (2007). Memory plasticity across the lifespan: Uncovering children’s latent potential. Developmental Psychology, 43, 465–478.PubMedCrossRefGoogle Scholar
  11. Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125–130.PubMedCrossRefGoogle Scholar
  12. Cotelli, M., Manenti, R., Brambilla, M., Petesi, M., Rosini, S., Ferrari, C., Zanetti, O., & Miniussi, C. (2014). Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Frontiers in Aging Neuroscience, 6, 38.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dahlin, E., Stigsdotter-Neely, A., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320, 510–512.CrossRefGoogle Scholar
  14. Davis, R. N., Massman, P. J., & Doody, R. S. (2001). Cognitive intervention in Alzheimer disease: A randomized placebo controlled study. Alzheimer Disease and Associated Disorders, 15, 1–9.PubMedCrossRefGoogle Scholar
  15. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. PNAS, 108, 3017–3022.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Flöel, A., Suttorp, W., Kohl, O., Kürten, J., Lohmann, H., Breitenstein, C., & Knecht, S. (2012). Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiology of Aging, 33, 1682–1689. [Zeilenumbruch].Google Scholar
  17. Freitas, C., Farzan, F., & Pascual-Leone, A. (2013). Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: Why, how and what is the ultimate goal? Frontiers in Neuroscience, 7, 42.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development. Psychological Science in the Public Interest, 9, 1–65.CrossRefGoogle Scholar
  19. Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25, 2027–2037.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Li, S. C., & Rieckmann, A. (2014). Neuromodulation and aging: Implications of aging neuronal gain control on cognition. Current Opinion in Neurobiology, 29, 148–158.PubMedCrossRefGoogle Scholar
  21. Li, S. C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5, 479–486.PubMedCrossRefGoogle Scholar
  22. Li, S. C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., & Baltes, P. B. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychological Science, 15, 155–163.PubMedCrossRefGoogle Scholar
  23. Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136, 659–676.PubMedCrossRefGoogle Scholar
  24. McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323, 800–802.PubMedCrossRefGoogle Scholar
  25. Meinzer, M., Lindenberg, R., Antonenko, A., Flaisch, T., & Flöel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. The Journal of Neuroscience, 33, 12470–12478.PubMedCrossRefGoogle Scholar
  26. Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMedCrossRefGoogle Scholar
  27. Nombela, C., Bustillo, P. J., Castell, P. F., Sanchez, L., Medina, V., & Herrero, M. T. (2011). Cognitive rehabilitation in Parkinson’s disease: Evidence from neuroimaging. Frontiers in Neurology, 2, 82.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Nyberg, L., Sandblom, J., Jones, S., Stigsdotter-Neely, A., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. PNAS, 100, 13728–13733.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303–308. [Zeilenumbruch].Google Scholar
  31. Prakash, R. S., Voss, M. W., Erickson, K. I., & Kramer, A. F. (2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769–797.PubMedCrossRefGoogle Scholar
  32. Rieckmann, A., Karlsson, S., Fischer, H., & Bäckman, L. (2011). Caudate dopamine D1 receptor density is associated with individual differences in frontoparietal connectivity during working memory. The Journal of Neuroscience, 31, 14284–14290.PubMedCrossRefGoogle Scholar
  33. Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 1–10.Google Scholar
  34. Shing, Y. L., Werkle-Bergner, M., Li, S. C., & Lindenberger, U. (2008). Associative and strategic components of episodic memory: A life-span dissociation. Journal of Experimental Psychology. General, 137, 495–513.PubMedCrossRefGoogle Scholar
  35. Squire, L. R., & Kandel, E. R. (1999). Memory: From mind to molecules. New York: Scientific American Library.Google Scholar
  36. Thurm, F., Schuck, N. W., Fauser, M., Doeller, C. F., Stankevich, Y., Evens, R., Riedel, O., Storch, A., Lueken, U., & Li, S.-C. (2016). Dopamine modulation of spatial navigation memory in Parkinson's disease. Neurobiology of Aging, 38, 93–103. [Zeilenumbruch].Google Scholar
  37. Turriziani, P., Smirni, D., Zappalà, G., Mangano, G. R., Oliveri, M., & Cipolotti, L. (2012). Enhancing memory performance with rTMS in healthy subjects and individuals with mild cognitive impairment: The role of the right dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 10, 6–62.Google Scholar
  38. van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.PubMedCrossRefGoogle Scholar
  39. Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P., & Petersen, R. C. (2004). Mild cognitive impairment – Beyond controversies, towards a consensus: Report of the International working group on mild cognitive impairment. Journal of Internal Medicine, 256, 240–246.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of Psychology Chair of Lifespan Developmental NeuroscienceTU DresdenDresdenGermany
  2. 2.Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany