Encyclopedia of Geropsychology

2017 Edition
| Editors: Nancy A. Pachana

History of Longitudinal Statistical Analyses

  • Manuel C. Voelkle
  • Janne Adolf
Reference work entry
DOI: https://doi.org/10.1007/978-981-287-082-7_135


Longitudinal data; Longitudinal data analysis; Longitudinal research; Longitudinal studies; Repeated measures

(Re)Constructing the History of Longitudinal Statistical Analysis

Longitudinal statistical analysis has a long past but a short history. In fact, until very recently, longitudinal statistical analysis did not exist as a subject, but was inextricably tied to substantive research in different disciplines. Even today, most publications on longitudinal statistical analysis are written from the perspective of a certain discipline and focus on a specific research design and data structure. Examples include pertinent work on large sample panel data (Hsiao 2014) and single-subject time series data (Lütkepohl 2005) in economics, crossover experimental designs in medical and pharmaceutical research (Jones and Kenward 2014), and the typical applications in the social sciences, often involving multiple individuals and a moderate number of repeated measurement occasions (Singer...

This is a preview of subscription content, log in to check access.


  1. Bacaër, N. (2011). A short history of mathematical population dynamics. London: Springer.CrossRefGoogle Scholar
  2. Baltes, P. B., & Nesselroade, J. R. (1973). The developmental analysis of individual differences on multiple measures. In J. R. Nesselroade & H. W. Reese (Eds.), Lifespan developmental psychology: Methodological issues (pp. 219–251). New York: Academic.Google Scholar
  3. Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp. 1–39). New York: Academic.Google Scholar
  4. Baltes, P. B., et al. (1980). Integration versus differentiation of fluid/crystallized intelligence in old age. Developmental Psychology, 16(6), 625–635.CrossRefGoogle Scholar
  5. Bereiter, C. (1963). Some persisting dilemmas in the measurement of change. In C. W. Harris (Ed.), Problems in measuring change (pp. 3–20). Madison: University of Wisconsin Press.Google Scholar
  6. Birren, J. E., & Schroots, J. E. (2000). The history of geropsychology. In J. E. Birren & J. E. Schroots (Eds.), A history of geropsychology in autobiography (pp. 3–28). Washington: American Psychological Association.CrossRefGoogle Scholar
  7. Blalock, H. M. (1964). Causal inferences in nonexperimental research. Chapel Hill: University of North Caroline Press.Google Scholar
  8. Bollen, K. A. (2007). On the origins of latent curve models. In R. Cudeck & R. C. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 79–97). Mahwah: Lawrence Erlbaum.Google Scholar
  9. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken: Wiley.Google Scholar
  10. Burr, J., & Nesselroade, J. R. (1990). Change measurement. In A. von Eye (Ed.), Statistical methods in longitudinal research (pp. 3–34). New York: Academic.CrossRefGoogle Scholar
  11. Cattell, R. B. (1952). The three basic factor-analytic designs: Their interrelations and derivatives. Psychological Bulletin, 49, 499–520.PubMedCrossRefGoogle Scholar
  12. Cerella, J., & Hale, S. (1994). The rise and fall in information-processing rates over the life span. Acta Psychologica, 86(2–3), 109–197.PubMedCrossRefGoogle Scholar
  13. Coleman, J. S. (1968). The mathematical study of change. In H. M. Blalock & A. Blalock (Eds.), Methodology in social research (pp. 428–478). New York: McGraw-Hill.Google Scholar
  14. Cronbach, L. J., & Furby, L. (1970). How we should measure “change”-or should we? Psychological Bulletin, 74(1), 68–80.CrossRefGoogle Scholar
  15. Duncan, O. D. (1969). Some linear models for two-wave, two-variable panel analysis. Psychological Bulletin, 72(3), 177–182.CrossRefGoogle Scholar
  16. Fitzmaurice, G., & Molenberghs, G. (2009). Advances in longitudinal data analysis: An historical perspective. In G. Fitzmaurice et al. (Eds.), Longitudinal data analysis (pp. 3–27). Boca Ration: Chapman & Hall/CRC.Google Scholar
  17. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.PubMedCrossRefGoogle Scholar
  18. Gottman, J. M. (Ed.). (1995). The analysis of change. Mahwah: Lawrence Erlbaum.Google Scholar
  19. Halaby, C. N. (2004). Panel models in sociological research: Theory into practice. Annual Review of Sociology, 30(30), 507–544.CrossRefGoogle Scholar
  20. Harris, C. W. (Ed.). (1963). Problems in measuring change. Madison: The University of Wisconsin Press.Google Scholar
  21. Hsiao, C. (2014). Analysis of panel data (3rd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Jones, B., & Kenward, M. G. (2014). Design and analysis of cross-over trials (3rd ed.). Boca Raton, FL: CRC Press.Google Scholar
  23. Jőreskog, K. G., & van Thiilo, M. (1972). Lisrel a general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables. ETS Research Bulletin Series, 1972(2), i–71.CrossRefGoogle Scholar
  24. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963–974.PubMedCrossRefGoogle Scholar
  25. Li, S.-C., et al. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychological Science, 15, 155–163.PubMedCrossRefGoogle Scholar
  26. Lindenberger, U. (2007). Historische Grundlagen: Johann Nicolaus Tetens als Wegbereiter des Lebensspannen-Ansatzes in der Entwicklungspsychologie. In J. Brandtstätter & U. Lindenberger (Eds.), Entwicklungspsychologie der Lebensspanne: Ein Lehrbuch. Stuttgart: W. Kohlhammer GmbH.Google Scholar
  27. Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? Science, 346(6209), 572–578.PubMedCrossRefGoogle Scholar
  28. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.CrossRefGoogle Scholar
  29. McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade & R. B. Cattel (Eds.), Handbook of multivariate experimental psychology (pp. 561–614). New York: Plenum Press.CrossRefGoogle Scholar
  30. McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analysis. In R. Cudeck, S. Du Toit, & D. Sörbom (Eds.), Structural equation modeling: Present and future (pp. 342–380). Lincolnwood: Scientific Software International.Google Scholar
  31. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107–122.CrossRefGoogle Scholar
  32. Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201–218.Google Scholar
  33. Nesselroade, J. R. (2002). Elaborating the differential in differential psychology. Multivariate Behavioral Research, 37(4), 543–561.PubMedCrossRefGoogle Scholar
  34. Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Survey, 3, 96–146.CrossRefGoogle Scholar
  35. Porter, T. M. (1986). The rise of statistical thinking 1820–1900. Princeton: Princeton University Press.Google Scholar
  36. Quetelet, A. (1835). Sur l’homme et le développement de ses facultés, ou Essai de physique sociale (Vol. 1). Paris: Bachelier, Imprimeur-Libraire.Google Scholar
  37. Rao, C. R. (1958). Some statistical methods for the comparison of growth curves. Biometrics, 14, 1–17.CrossRefGoogle Scholar
  38. Rogosa, D. R. (1988). Myths about longitudinal research. In K. W. Schaie et al. (Eds.), Methodological issues in aging research (pp. 171–209). New York: Springer.Google Scholar
  39. Rubin, D. B. (2005). Causal inference using potential outcomes. Journal of the American Statistical Association, 100(469), 322–331.CrossRefGoogle Scholar
  40. Schaie, K. W., et al. (1998). Longitudinal invariance of adult psychometric ability factor structures across 7 years. Psychology and Aging, 13(1), 8–20.PubMedCrossRefGoogle Scholar
  41. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence (p. 644). New York: Oxford University Press.CrossRefGoogle Scholar
  42. Sontag, L. W. (1971). The history of longitudinal research: Implications for the future. Child Development, 42(4), 987–1002.PubMedCrossRefGoogle Scholar
  43. Stigler, S. M. (2002). Statistics on the table: The history of statistical concepts and methods. Cambridge, MA: Harvard University Press.Google Scholar
  44. Tucker, L. R. (1958). Determination of parameters of a functional relation by factor analysis. Psychometrika, 23, 19–23.CrossRefGoogle Scholar
  45. Tucker, L. R. (1966). Learning theory and multivariate experiment: Illustration by determination of generalized learning curves. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 476–501). Chicago: Rand McNally & Company.Google Scholar
  46. Tuma, N. B., & Hannan, M. T. (1984). Social dynamics: Models and methods. Orlando: Academic.Google Scholar
  47. Wishart, J. (1938). Growth-rate determinations in nutrition studies with the bacon pig, and their analyses. Biometrika, 30, 16–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Institute of PsychologyHumboldt University BerlinBerlinGermany
  2. 2.Max Planck Institute for Human DevelopmentBerlinGermany