Handbook of Dietary Phytochemicals pp 1-54 | Cite as
Dietary Phytoecdysteroids
Abstract
Phytoecdysteroids are polyhydroxylated steroids which are widely distributed in the plant world and are present in significant amounts in 5–6% of plant species. Their major role in the plant is probably to deter invertebrate predators, but ecdysteroids also have many beneficial effects in mammals and are attracting attention as therapeutic and nutraceutical agents. Four hundred analogues have been identified so far from plant sources, but 20-hydroxyecdysone is the most frequently encountered and is often the major analogue present. Here we consider the occurrence of phytoecdysteroids in food plants and the human diet and how this might change in the future against the backdrop of what we currently know about biosynthesis of these compounds in plants and their bioavailability, metabolism, and biological activities in mammals. Finally, we discuss the medical and pharmaceutical potential of these molecules, particularly in the area of muscle wasting diseases and diabetes, and indicate which areas of fundamental research require focused study.
Keyword
20-Hydroxyecdysone Anabolic Antidiabetic Bioavailability Biosynthesis Dietary intake Metabolism Quinoa Spinach Steroid Structure-activity relationshipAbbreviations
- 20E
20-hydroxyecdysone
- 2d20E
2-deoxy-20-hydroxyecdysone
- 4E-BP1
4E-binding protein 1
- ADMET
adsorption, distribution, metabolism, excretion, toxicology
- AjuC
ajugasterone C
- CNS
central nervous system
- Cyast
cyasterone
- DHT
dihydrotestosterone
- DMD
Duchenne muscular dystrophy
- E
ecdysone
- E2
estradiol
- HPLC
high-performance liquid chromatography
- i.p.
intraperitoneal
- IGF-1
insulin-like growth factor 1
- Ino
inokosterone
- IntA
integristerone A
- LC
liquid chromatography
- LD50
dose bringing about 50% mortality
- MakA
makisterone A
- MS
mass spectrometry
- mTORC1
mammalian (or mechanistic) target of rapamycin complex 1
- NMR
nuclear magnetic resonance spectroscopy
- PI3K
phosphoinositide kinase-3
- PoA
ponasterone A
- PolB
polypodine B
- Pter
pterosterone
- RIA
radioimmunoassay
- Rub
rubrosterone
- SAR
structure-activity relationship
- TLC
thin-layer chromatography
- Turk
turkesterone
- UV
ultraviolet
Notes
Acknowledgments
We are grateful to Biophytis for supporting the preparation of this chapter; we thank Christine Balducci and Louis Guibout for carrying out the HPLC-MS/MS of food plant samples and Stanislas Veillet and Pierre Dilda for their comments on the manuscript.
References
- Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A et al (2018) Novel sub-groups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(18)30051-2CrossRefGoogle Scholar
- Anthony TG, Mirek ET, Bargoud AR, Phillipson-Weiner L, DeOliveira CM, Wetstein B, Graf BL, Kuhn PE, Raskin I (2015) Evaluating the effect of 20-hydroxyecdysone (20HE) on mechanistic target of rapamycin complex (mTORC1) signalling in the skeletal muscle and liver of rats. Appl Physiol Nutr Metab 40:1324–1328PubMedCrossRefPubMedCentralGoogle Scholar
- APGIV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGIV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar
- Asada M, Kato Y, Matsuura T, Watanabe H (2014) Visualization of ecdysteroid activity using a reporter gene in the crustacean, Daphnia. Mar Environ Res 93:118–122PubMedCrossRefPubMedCentralGoogle Scholar
- Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N (2008) Ecdysteroids in spinach (Spinacia oleracea L.): biosynthesis, transport and regulation of levels. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2008.06.002PubMedCrossRefPubMedCentralGoogle Scholar
- Bakrim A, Ngunjiri J, Crouzet S, Guibout L, Balducci C, Girault J-P Lafont R (2014) Ecdysteroid profiles of two Ajuga species, A. iva and A. remota. Nat Prod Commun 9:1069–1074PubMedPubMedCentralGoogle Scholar
- Bandara BM, Jayasinghe L, Karunaratne V, Wannigama GP, Bokel M, Kraus W, Sotheeswaran S (1989) Ecdysterone from stem of Diploclisia glaucescens. Phytochemistry 28:1073–1075CrossRefGoogle Scholar
- Báthori M, Tóth N, Hunyadi A, Márki A, Zádor E (2008) Phytoecdysteroids and anabolic-androgenic steroids – structure and effects on humans. Curr Med Chem 15:75–91PubMedCrossRefPubMedCentralGoogle Scholar
- Báthory M, Tóth I, Szendrei K, Rattai M, Minker E, Blazsó G (1984) Determination and isolation of ecdysteroids in native goosefoot species. Herba Hungarica 23:131–145Google Scholar
- Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763PubMedCrossRefPubMedCentralGoogle Scholar
- Bespayeva AM, Tuleuov BI, Habdolda G, Turmuhkambetov AA, Tuleuova BK, Isaiynova LA, Kuatbeyev OU, Adekenov SM (2012) The spread of 20-hydroxyecdysone and it analogues in plants. Series ‘Chemistry’ (2):13–17Google Scholar
- Blackford M, Dinan L (1997a) The tomato moth Lacanobia oleraceae (Lepidoptera: Noctuidae) detoxifies ingested 20-hydroxyecdysone, but is susceptible to the ecdysteroid agonists RH-5849 and RH-5992. Insect Biochem Mol Biol 27:167–177CrossRefGoogle Scholar
- Blackford MJP, Dinan L (1997b) The effects of ingested 20-hydroxyecdysone on the larvae of Aglais urticae, Inachis io, Cynthia cardui (Lepidoptera: Nymphalidae) and Tyria jacobaeae (Lepidoptera: Arctiidae). J Insect Physiol 43:315–327PubMedCrossRefPubMedCentralGoogle Scholar
- Blackford M, Clarke B, Dinan L (1996) Tolerance of the Egyptian cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) to ingested phytoecdysteroids. J Insect Physiol 42:931–936CrossRefGoogle Scholar
- Bolduc TM (2008) Human urinary excretion profiles after exposure to ecdysterone. MSc thesis, University of Utah, p 189Google Scholar
- Brandt FW (2003) Pharmakokinetik und Metabolismus des 20-Hydroxyecdysons im Menschen. PhD thesis, University of Marburg, Marburg, p 120Google Scholar
- Chakraborty S, Basu S (2017) Dual inhibition of BACE1 and Aβ aggregation by β-ecdysone: application of a phytoecdysteroid scaffold in Alzheimer’s disease therapeutics. Int J Biol Macromol 95:281–287PubMedCrossRefPubMedCentralGoogle Scholar
- Chen Q, Xia Y, Qiu Z (2006) Effect of ecdysterone on glucose metabolism in vitro. Life Sci 78:1108–1113PubMedCrossRefPubMedCentralGoogle Scholar
- Clément CY, Dinan L (1991) Development of an assay for ecdysteroid-like and anti-ecdysteroid activities in plants. In: Hrdý I (ed) Insect chemical ecology. Academia, Prague, pp 221–226Google Scholar
- Dai W-W, Wang L-B, Jin G-Q, Wu H-J, Zhang J, Wang C-L, Wei Y-J, Lee J-H, Lay Y-AE, Yao W (2017) Beta-ecdysone protects mouse osteoblasts from glucoroticoid-induced apoptosis in vitro. Planta Med. https://doi.org/10.1055/s-0043-107808PubMedCrossRefPubMedCentralGoogle Scholar
- Destrez B, Pinel G, Monteau F, Lafont R, Le Bizec B (2009) Detection and identification of 20-hydroxyecdysone metabolites in calf urine by liquid chromatography-high resolution or tandem mass spectrometry measurements and establishment of their kinetics of elimination after 20-hydroxyecdysone administration. Anal Chim Acta 637:178–184PubMedCrossRefPubMedCentralGoogle Scholar
- Devarenne TP, Sen-Michael B, Adler JH (1995) Biosynthesis of ecdysteroids in Zea mays. Phytochemistry 40:1125–1131CrossRefGoogle Scholar
- Dinan L (1992a) The association of phytoecdysteroids with flowering in fat hen, Chenopodium album, and other members of the Chenopodiaceae. Experientia 48:305–308CrossRefGoogle Scholar
- Dinan L (1992b) The analysis of phytoecdysteroids in single (preflowering stage) specimens of fat hen, Chenopodium album. Phytochem Anal 3:132–138CrossRefGoogle Scholar
- Dinan L (1995a) A strategy for the identification of ecdysteroid receptor agonists and antagonists from plants. Eur J Entomol 92:271–283Google Scholar
- Dinan L (1995b) Distribution and levels of phytoecdysteroids within individual plants of species of the Chenopodiaceae. Eur J Entomol 92:295–300Google Scholar
- Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339PubMedPubMedCentralCrossRefGoogle Scholar
- Dinan L (2009) The Karlson lecture. Phytoecdysteroids: what use are they? Arch Insect Biochem Physiol. https://doi.org/10.1002/arch.20334PubMedCrossRefPubMedCentralGoogle Scholar
- Dinan L, Hormann RE (2005) Ecdysteroid agonists and antagonists. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 3 (Endocrinology). Elsevier, Amsterdam, pp 197–242CrossRefGoogle Scholar
- Dinan L, Lafont R (2006) Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. J Endocrinol 191:1–8PubMedCrossRefPubMedCentralGoogle Scholar
- Dinan L, Whiting P, Scott AJ (1998) Taxonomic distribution of phytoecdysteroids in seeds of members of the Chenopodiaceae. Biochem Syst Ecol 26:553–576CrossRefGoogle Scholar
- Dinan L, Savchenko T, Whiting P (2001) On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 58:1121–1132PubMedCrossRefPubMedCentralGoogle Scholar
- Dittrich M, Solich P, Opletal L, Hunt AJ, Smart JD (2000) 20-Hydroxyecdysone release from biodegradable devices: the effect of size and shape. Drug Dev Ind Pharm 26:1285–1291PubMedCrossRefPubMedCentralGoogle Scholar
- El Mofty MM, Sadek I, Soliman A, Mohamed A, Sakre S (1987) α-Ecdysone, a new bracken fern factor responsible for neoplasm induction in the Egyptian toad (Bufo regularis). Nutr Cancer 9:103–107PubMedCrossRefPubMedCentralGoogle Scholar
- El Mofty MM, Sakr SA, Rizk AM, Moussa EA (1994) Induction of breast and lung neoplastic lesions in mice by alpha ecdysone. Oncol Rep 1:435–438Google Scholar
- Elmogy M, Iwami M, Sakurai S (2004) Presence of membrane ecdysone receptor in the anterior silk gland of the silkworm Bombyx mori. Eur J Biochem 271:3171–3179PubMedCrossRefGoogle Scholar
- Findeisen E (2004) Ecdysteroide in menschlicher Nahrung. PhD thesis, University of Marburg, Marburg, p 69Google Scholar
- Foucault A-S (2012) Effets d’un extrait de quinoa enrichi en 20-hydroxyecdysone dans un modèle d’obésité nutritionnelle: application clinique. PhD thesis. AgroParis-Tech, p 258Google Scholar
- Foucault A-S, Mathé V, Lafont R, Even P, Dioh W, Veillet S, Tomé D, Huneau J-F, Hermier D, Quignard-Boulangé A (2012) Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokine expression. Obesity 20:270–277PubMedCrossRefGoogle Scholar
- Foucault A-S, Even P, Lafont R, Dioh W, Veillet W, Tomé D, Huneau J-F, Hermier D, Quignard-Boulangé A (2014) Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiol Behav 128:226–231PubMedCrossRefPubMedCentralGoogle Scholar
- Fujimoto Y, Ohyama K, Nomura K, Hyodo R, Takahashi K, Yamada J, Morisaki M (2000) Biosynthesis of sterols and ecdysteroids in Ajuga hairy roots. Lipids 35:279–288PubMedCrossRefPubMedCentralGoogle Scholar
- Fujimoto Y, Maeda I, Ohyama K, Hikiba J, Kataoka H (2015) Biosynthesis of 20-hydroxyecdysone in plants: 3β-hydroxy-5β-cholestan-6-one as an intermediate after cholesterol in Ajuga hairy roots. Phytochemistry 111:59–64PubMedCrossRefPubMedCentralGoogle Scholar
- Girault J-P, Lafont R, Kerb U (1988) Ecdysone catabolism in the white mouse. Drug Metab Dispos 16:716–720PubMedPubMedCentralGoogle Scholar
- Gorelick-Feldman J, MacLean D, Ilic N, Poulev A, Lila MA, Cheng D, Raskin I (2008) Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem 56:3532–3537PubMedCrossRefPubMedCentralGoogle Scholar
- Gorelick-Felman J, Cohick W, Raskin I (2010) Ecdysteroids elicit a rapid Ca2+ flux leading to Akt activation and increased protein synthesis in skeletal muscle cells. Steroids 75:632–637CrossRefGoogle Scholar
- Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I (2014) Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem 163:178–185PubMedPubMedCentralCrossRefGoogle Scholar
- Hikino H, Ohizumi Y, Takemoto T (1972) Absorption, distribution, metabolism and excretion of insect-metamorphosing hormone ecdysterone in mice. II. Chem Pharm Bull 20:2454–2458PubMedCrossRefPubMedCentralGoogle Scholar
- Hirono I, Sasaoka I, Shimizu M (1969) Effect of insect-moulting hormones, ecdysterone and inokosterone, on tumor cells. GANN 60:341–342PubMedPubMedCentralGoogle Scholar
- Hirotani M, Asaka I, Ino C, Furuya T, Shiro M (1987) Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidum. Phytochemistry 26:2797–2803CrossRefGoogle Scholar
- Höcht C, Mayer M, Taira CA (2009) Therapeutic perspectives of angiotensin-(1-7) in the treatment of cardiovascular diseases. Open Pharmacol J 3:21–31CrossRefGoogle Scholar
- Hunyadi A, Herke I, Lengyel K, Báthori M, Kele Z, Simon A, Tóth G, Szendrei K (2016) Ecdysteroid-containing food supplements from Cyanotis arachnoidea on the European market: evidence for spinach product counterfeiting. Sci Rep. https://doi.org/10.1038/srep37322
- Ishizuka T, Yaoita Y, Kikuchi M (1997) Sterol constituents from the fruit bodies of Grifola frondosa (Fr.) S.F. Gray. Chem Pharm Bull 45:1756–1760CrossRefGoogle Scholar
- Kalász H, Hunyadi A, Tekes K, Dolesal R, Karvaly G (2017) HPLC analysis and blood-brain penetration of 20-hydroxyecdysone diacetonide. Acta Chromatogr 29:375–383CrossRefGoogle Scholar
- Kawagishi H, Katsumi R, Sazawa T, Mizuno T, Hagiwara T, Nakamura T (1988) Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry 27:2777–2779CrossRefGoogle Scholar
- Kawahara N, Sekita S, Satake M (1993) A novel dimeric steroid, calvasterone, from the fungus Calvatia cyathiformis. Chem Pharm Bull 41:1318–1320CrossRefGoogle Scholar
- Kawahara N, Sekita S, Satake M (1994) Steroids from Calvatia cyathiformis. Phytochemistry 37:213–215CrossRefGoogle Scholar
- Kawahara N, Sekita S, Satake M (1995) Two steroids from Calvatia cyathiformis. Phytochemistry 38:947–950CrossRefGoogle Scholar
- Kizelsztein P, Govorko D, Komarnytsky S, Evans A, Wang Z, Cefalu WT, Raskin I (2009) 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. Am J Physiol Endocrinol Metab 296:E433–E439PubMedPubMedCentralCrossRefGoogle Scholar
- Konovalova NP, Mitrokhin YI, Volkova LM, Sidorenko LI, Todorov IN (2002) Ecdysterone modulates antitumor activity of cytostatics and biosynthesis of marcromolecules in tumor-bearing mice. Biol Bull 29:530–536CrossRefGoogle Scholar
- Koolman J (ed) (1989) Ecdysone – from chemistry to mode of action. Georg Thieme Verlag, Berlin, p 482Google Scholar
- Kovganko NV (1999) Ecdysteroids and related compounds in fungi. Chem Nat Compd 35:597–611CrossRefGoogle Scholar
- Kumpun S, Maria A, Crouzet S, Evrard-Todezschi N, Girault J-P, Lafont R (2011a) Ecdysteroids from Chenopodium quinoa Willd., an ancient Andean crop of high nutritional value. Food Chem 125:1226–1234CrossRefGoogle Scholar
- Kumpun S, Girault J-P, Dinan L, Blais C, Maria A, Dauphin-Villemant C, Yingyongnarongkul B, Suksamrarn A, Lafont R (2011b) The metabolism of 20-hydroxyecdysone in mice: relevance to pharmacological effects and gene switch applications of ecdysteroids. J Steroid Biochem Mol Biol 126:1–9PubMedCrossRefPubMedCentralGoogle Scholar
- Lafont R (1997) Ecdysteroids and related molecules from plants and animals. Arch Insect Biochem Physiol 35:3–20CrossRefGoogle Scholar
- Lafont R (1998) Phytoecdysteroids in the world flora: diversity, distribution, biosynthesis and evolution. Russ J Plant Physiol 45:276–295Google Scholar
- Lafont R (2012) Recent progress in ecdysteroid pharmacology. Theor Appl Ecol 1:6–12Google Scholar
- Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals including humans: an update. J Insect Sci 3(7):30. www.insectscience.org/3.7CrossRefGoogle Scholar
- Lafont R, Dinan L (2009) Innovative and future applications for ecdysteroids. In: Smagghe G (ed) Ecdysone: structures and functions. Springer Science + Business Media, pp 551–578Google Scholar
- Lafont R, Horn DHS (1989) Phytoecdysteroids: structures and occurrence. In: Koolman J (ed) Ecdysone – from chemistry to mode of action. Georg Thieme Verlag, Berlin, pp 39–64Google Scholar
- Lafont R, Wilson ID (1996) The ecdysone handbook, 2nd edn. The Chromatographic Society, NottinghamGoogle Scholar
- Lafont R, Girault J-P, Kerb U (1988) Excretion and metabolism of injected ecdysone in the white mouse. Biochem Pharmacol 37:1174–1177PubMedCrossRefPubMedCentralGoogle Scholar
- Lafont R, Bouthier A, Wilson ID (1991) Phytoecdysteroids: structures, occurrence, biosynthesis and possible ecological significance. In: Hrdý I (ed) Insect chemical ecology. Academia, Prague, pp 197–216Google Scholar
- Lafont R, Koolman J, Rees HH (1993) Standardized abbreviations for common ecdysteroids. Insect Biochem Mol Biol 23:207–209CrossRefGoogle Scholar
- Lafont R, Harmatha J, Marion-Poll F, Dinan L, Wilson ID (2002) The Ecdysone handbook, 3rd edn, on-line (regularly updated). http://ecdybase.org
- Lagova ND, Valueva IM (1981) Effect of ecdysterone isolated from Rhaponticum carthamoides on the growth of experimental tumors. Eksperimental’naya Onkologiya 3:69–71Google Scholar
- Lobell M, Hendrix M, Hinzen B, Keldenich J, Meier H, Schmeck C, Schohe-Loop R, Wunberg T, Hillisch A (2006) In silico ADMET traffic lights as a tool for the prioritization of HTS hits. ChemMedChem 1:1229–1236PubMedCrossRefPubMedCentralGoogle Scholar
- Lu M, Wang P, Zhou S, Flickinger B, Malhotra D, Ge Y, Tatar M, Dworkin L, Liu Z, Gong R (2018a) Ecdysone elicits chronic renal impairment via mineralocorticoid-like pathogenic activities. Cell Physiol Biochem 49:1633–1645PubMedCrossRefPubMedCentralGoogle Scholar
- Lu M, Wang P, Ge Y, Dworkin L, Brem A, Liu Z, Gong R (2018b) Activation of mineralocorticoid receptor by ecdysone, an adaptogenic and anabolic ecdysteroid, promotes glomerular injury and proteinuria involving overactive GSK3β pathway signalling. Sci Rep 8:12225. https://doi.org/10.1038/s41598-018-29483-7CrossRefPubMedPubMedCentralGoogle Scholar
- Mamadalieva NZ (2013) In: Azimova SS (ed) Natural compounds: phytoecdysteroids. Springer, New York, p 310Google Scholar
- Mamadalieva NZ, Egamberdiyeva D, Lafont R, Syrov VN, Girault J-P (2008) Polar ecdysteroids and biological activity of the total ecdyteroids from the plant Silene viridiflora. Poster Presentation at the XVIIth Ecdysone Workshop, Ulm, GermanyGoogle Scholar
- Martins A, Tóth N, Ványolós A, Béni Z, Zupkó I, Molnár J, Bathori M, Hunyadi A (2012) Significant activity of ecdysteroids on the resistance to doxorubicin in mammalian cancer cells expressing the human ABCB1 transporter. J Med Chem 55:5034–5043PubMedCrossRefPubMedCentralGoogle Scholar
- Martins A, Sipos P, Dér K, Csábi J, Miklos W, Berger W, Zalatnai A, Amaeral L, Molnár J, Szabó-Révész P, Hunyadi A (2015) Ecdysteroids sensitize MDR and non-MDR cancer cell lines to doxorubicin, paclitaxel, and vincristine, but tend to protect them from cisplatin. Biomed Res Int 2015(895360): 8. http://dx.doi.org/10.1155/2015/895360Google Scholar
- Murphy KT, Hossain MI, Swiderski K, Chee A, Naim T, Trieu J, Haynes V, Read SJ, Stapleton DI, Judge SM, Trevino JG, Judge AR, Lynch GS (2018) Mas receptor activation slows tumor growth and attenuates muscle wasting in cancer. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-18-1207PubMedCrossRefPubMedCentralGoogle Scholar
- Nakanishi K (2006) Studies in microbial and insect natural products chemistry. J Nat Med 60:2–20CrossRefGoogle Scholar
- Neves CS, Gomes SSL, dos Santos TR, de Almeida MM, de Souza YO, Garcia RMG, Otoni WC, Chedier LM, Viccini LF, De Campos JMS (2016) The phytoecdysteroid β-ecdysone is genotoxic in rodent bone marrow micronuclei and Allium cepa L. assays. J Ethnopharmacol 177:81–84PubMedCrossRefPubMedCentralGoogle Scholar
- Nishitoba T, Sato H, Oda K, Sakamura S (1988) Novel triterpenoids and a steroid from the fungus Ganoderma lucidum. Agric Biol Chem 52:211–216Google Scholar
- Ochieng CO, Ishola IO, Oplyo SA, Manguro LAO, Owuor PO, Wong K-C (2013) Phytoecdysteroids from the stem bark of Vitex donania and their anti-inflammatory effects. Planta Med 79:52–59PubMedPubMedCentralGoogle Scholar
- Ogawa S, Nishimoto N, Matsuda H (1974) Pharmacology of ecdysones in vertebrates. In: Burdette WJ (ed) Invertebrate endocrinology and hormonal heterophylly. Springer, Berlin, pp 341–344CrossRefGoogle Scholar
- Ohsawa T, Yukawa M, Takao C, Murayama M, Bando H (1992) Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity. Chem Pharm Bull 40:143–147PubMedCrossRefPubMedCentralGoogle Scholar
- Panossian A (2017) Understanding adaptogenic activity: specificity of teh pharmacological action of adaptogens and other phytochemicals. Ann N Y Acad Sci 1401:49–64PubMedCrossRefPubMedCentralGoogle Scholar
- Panossian A, Wikman G (2005) Effect of adaptogens on the central nervous system. Arquivos Brasilieros de Fitomedicina Cientifica 3:29–51Google Scholar
- Panossian A, Wikman G, Wagner H (1999) Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine 6:287–300PubMedCrossRefPubMedCentralGoogle Scholar
- Parr MK, Zhao P, Haupt O, Tchoukouengo Ngueu S, Hengevoss J, Fritzemeier KH, Piechotta M, Schlörer N, Muhn P, Zheng W-Y, Xie M-Y, Diel P (2014) Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201300806CrossRefGoogle Scholar
- Parr MK, Botrè F, Naß A, Hengevoss J, Diel P, Wolber G (2015) Ecdysteroids: a novel class of anabolic agents? Biol Sport 32:169–173PubMedPubMedCentralCrossRefGoogle Scholar
- Pounds NA, Hutchinson TH, Williams TD, Whiting P, Dinan L (2002) Assessment of putative endocrine disruptors in an in vivo crustacean assay and an in vitro insect assay. Mar Environ Res 54:709–713PubMedCrossRefPubMedCentralGoogle Scholar
- Rastrelli L, de Tommasi N, Ramos I (1996) Ecdysteroids in Chenopodium pallidicaule seeds. Biochem Syst Ecol 24:353CrossRefGoogle Scholar
- Raynal S, Foucault AS, Ben Massoud S, Dioh W, Lafont R, Veillet S (2015) BIO101, a drug candidate targeting sarcopenic obesity through MAS receptor activation. J Cachexia Sarcopenia Muscle 6:429Google Scholar
- Saeng-ngam S, Juntawong N, Vajarothai S, Visetson S (2004) Comparative study of moulting hormone content in different plant species. Proceedings of the 42nd Kasetsart University Annual Conference, Kasetsart, Thailand, 3–6th February, 2004, pp 284–290 (on-line at: http://kucon.lib.ku.ac.th/FullText/KC4201035.pdf)
- Sautour M, Canon F, Miyamoto T, Dongmo A, Lacaille-Dubois M-A (2008) A new ecdysteroid and other constituents from two Dioscorea species. Biochem Syst Ecol 36:559–563CrossRefGoogle Scholar
- Savchenko T, Blackford M, Sarker SD, Dinan L (2001) Phytoecdysteroids from Lamium spp: indentification and distribution within plants. Biochem Syst Ecol 29:891–900PubMedCrossRefPubMedCentralGoogle Scholar
- Schreihofer DA, Duong P, Cunningham RL (2018) N-terminal truncations in sex steroid receptors and rapid steroid actions. Steroids 133:15–20PubMedCrossRefPubMedCentralGoogle Scholar
- Seidlova-Wuttke D, Erhardt C, Wuttke W (2010a) Metabolic effects of 20-OH-ecdysone in ovariectomized rats. J Steroid Biochem Mol Biol 119:121–126PubMedCrossRefPubMedCentralGoogle Scholar
- Seidlova-Wuttke D, Christel D, Kapur P, Nguyen BT, Jarry H, Wuttke W (2010b) β-Ecdysone has bone protective but no estrogenic effects in ovariectomized rats. Phytomedicine 17:884–889PubMedCrossRefPubMedCentralGoogle Scholar
- Simon P (1988) Ecdysteroide im Säugerorganismus und ihr Nachweis als Möglichkeit der Diagnose helminthischer Infektionen. PhD thesis, University of Marburg, Marburg, Germany, p 131Google Scholar
- Simon P, Koolman J (1989) Ecdysteroids in vertebrates: pharmacological aspects. In: Koolman J (ed) Ecdysone – from chemistry to mode of action. Georg Thieme Verlag, Berlin, pp 254–259Google Scholar
- Singh AU, Sharma K (2016) Pest of mushroom. Adv Crop Sci Technol 4:2. https://doi.org/10.4172/2329-8863.1000213CrossRefGoogle Scholar
- Sláma K, Lafont R (1995) Insect hormones – ecdysteroids: their presence and actions in vertebrates. Eur J Entomol 92:355–377Google Scholar
- Sobrino A, Vallejo S, Novella S, Lázaro-Franco M, Mompeón A, Bueno-Betí C, Walther T, Sánchez-Ferrer C, Peiró C (2017) Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation. Biochem Pharmacol 129:67–72PubMedCrossRefPubMedCentralGoogle Scholar
- Sreejit CM (2014) Quantitative ethnobotany and phytochemistry of selected plants used in traditional therapeutics by ethnic tribes of Wayanad District, Kerala. PhD thesis, Mahatma Gandhi University, KottayanGoogle Scholar
- Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci 25:6145–6155PubMedPubMedCentralCrossRefGoogle Scholar
- Sun Y, Yasukawa K (2008) New anti-inflammatory ergostane-type ecdysteroids from the sclerotium of Polyporus umbellatus. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2008.04.008CrossRefGoogle Scholar
- Syrov VN (2000) Comparative experimental investigation of the anabolic activity of phytoecdysteroids and steranabols. Pharm Chem J 34:193–197CrossRefGoogle Scholar
- Syrov VN, Aizikov MI, Kurmukov AG (1975) Effect of ecdysterone on the content of protein, glycogen and fat in white rat liver, heart and muscle. Doklady Akad Nauk Uzbek SSR 8:37–38Google Scholar
- Syrov VN, Khushbaktova ZA, Tashmukhamedova MA (1997) Hypoglycaemic action of phytoecdysteeroids and some aspects of its mechanism and realisation in experimental animals. Doklady Akad Nauk Resp Uzbek 4:46–49Google Scholar
- Takaishi Y, Uda M, Ohashi T, Nakano K, Murakami K, Tomimatsu T (1991) Glycosides of ergosterol derivatives from Hericum erinacens [sic]. Phytochemistry 30:4117–4120CrossRefGoogle Scholar
- Takasaki M, Tokuda H, Nishino H, Konoshima T (1999) Cancer chemopreventive agents (antitumor promoters) from Ajuga decumbens. J Nat Prod 62:972–975PubMedCrossRefPubMedCentralGoogle Scholar
- Takemotos T, Ogawa S, Nishimoto N, Arihara S, Bue K (1967) Insect moulting activity of crude drugs and plants (1). Yakugaku Zasshi 87:1414–1418CrossRefGoogle Scholar
- Tóth N, Szabo A, Kacsala P, Héger J, Zádor E (2008) 20-Hydroxyecdysone increases fiber size in a muscle-specific fashion in rat. Phytomedicine 15:691–698PubMedCrossRefPubMedCentralGoogle Scholar
- Uchiyama M, Otaka T (1974) Phytoecdysones and protein metabolism in mammalia. In: Burdette WJ (ed) Invertebrate endocrinology and hormonal heterophylly. Springer, Berlin, pp 375–400CrossRefGoogle Scholar
- Uchiyama M, Yoshida T (1974) Effect of ecdysterone on carbohydrate and lipid metabolism. In: Burdette WJ (ed) Invertebrate endocrinology and hormonal Heterophylly. Springer, Berlin, pp 401–416CrossRefGoogle Scholar
- Velasco R, Licciardello C (2014) A genealogy of the citrus family. Nat Biotechnol 32:640–642PubMedCrossRefPubMedCentralGoogle Scholar
- Vokáč K, Budĕšínsky M, Harmatha J, Píš J (1998) New ergostane type ecdysteroids from fungi. Ecdysteroid constituents of mushroom Paxillus atrotomentosus. Tetrahedron 54:1657–1666CrossRefGoogle Scholar
- Xu T, Niu C, Zhang X, Dong M (2018) β-Ecdysterone protects SH-SY5Y cells against β-amyloid-induced apoptosis via c-Jun N-terminal kinase- and Akt-associated complementary pathways. Lab Investig. https://doi.org/10.1038/s41374-017-0009-0PubMedCrossRefPubMedCentralGoogle Scholar
- Yang S-F, Yang Z-Q, Wu Q, Lu Y-F, Zhou Q-X, Huang X-N, Sun A-S, Shi J-S (2003) Inhibitory effect of ecdysterone on fibril-formation and neurotoxicity of amyloid β-protein in vitro. Chin J Pharmacol Toxicol 17:375–379Google Scholar
- Yang S-G, Zhang X, Sun X-S, Ling T-J, Feng Y, Du X-Y, Zhao M, Yang Y, Xue D, Wang L, Liu R-T (2010) Diverse ecdysterones show different effects on amyloid-β42 aggregation but all uniformly inhibit amyloid-β42-induced cytotoxicity. J Alzheimers Dis 22:107–117PubMedCrossRefPubMedCentralGoogle Scholar
- Yaoita Y, Amemiya K, Ohnuma H, Furumura K, Masaki A, Matsuki T, Kikuchi M (1998) Sterol constituents from five edible mushrooms. Chem Pharm Bull 46:944–950CrossRefGoogle Scholar
- Yin W, Song ZR, Liu JQ, Zhang GS (2015) Chemical constituents of Citrus medica fruit. Zhong Yao Cai 38:2091–2094PubMedPubMedCentralGoogle Scholar
- Yoshida T, Galvez S, Tiwari S, Rezk BM, Semprun-Prieto L, Higashi Y, Sukhanov S, Yablonka-Reuveni Z, Delafontaine P (2013) Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration. J Biol Chem 288:23823–23832PubMedPubMedCentralCrossRefGoogle Scholar
- Zhao Y-Y (2013) Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: a review. J Ethnopharmacol 149:35–48PubMedCrossRefPubMedCentralGoogle Scholar
- Zhao Y-Y, Cheng X-L, Zhang Y, Zhao Y, Lin R-C, Sun W-J (2009) Simultaneous determination of eight major steroids from Polyporus umbellatus by high-performance liquid chromatography coupled with mass spectrometry detections. Biomed Chromatogr. https://doi.org/10.1002/bmc.1277
- Zhou W-W, Lin W-H, Guo S-X (2007) Two new polyporusterones isolated from the sclerotia of Polyporus umbellatus. Chem Pharm Bull 55:1148–1150PubMedCrossRefPubMedCentralGoogle Scholar
- Zibareva L, Volodin V, Saatov Z, Savchenko T, Whiting P, Lafont R, Dinan L (2003) Distribution of phytoecdysteroids in the Caryophyllaceae. Phytochemistry 64:499–517PubMedCrossRefPubMedCentralGoogle Scholar
- Zwetsloot KA, Shanely AR, Merritt EK, McBride JM (2014) Phytoecdysteroids: a novel, non-androgenic alternative for muscle health and performance. J Steroids Horm Sci S12:e001. https://doi.org/10.4172/2157-7536.S12-e001CrossRefGoogle Scholar