Advertisement

Gallotannins in Food

  • Ipek SuntarEmail author
  • Fabiana Labanca
  • Luigi Milella
Living reference work entry

Abstract

Tannins are natural polyphenolic components found in fruits such as grapes, apples, pears, plums, peaches, strawberries, and cranberries as well as in beverages including wine and tea. Other sources of tannins are Acer ginnala Maxim., Caesalpinia spinosa (Molina) Kuntze, Caesalpinia brevifolia Baill., Hamamelis virginiana L., Quercus infectoria Oliv., Terminalia chebula Retz., Eucalyptus sieberiana F. Muell., and Schinopsis Engl. species. Tannins can be classified into hydrolyzable and nonhydrolyzable (condensed) tannins. Hydrolyzable tannins possess a polyhydric alcohol group in center and hydroxyl groups that are esterified by gallic acid or hexahydroxydiphenic acid, called gallotannins and ellagitannins, respectively. Medicinal plants containing gallotannins, Rhus chinensis Mill. and Terminalia chebula Retz., have been prescribed for the treatment of cough, constipation, dysentery, and dysfunctions of the liver and kidney in traditional Chinese medicine. Gallotannins, belong to antioxidant class of polyphenols, seems to be involved in a wide variety of mechanisms linked to human health. Despite their important biological activities, ingestion of large quantities of these compounds may cause some adverse effects. The number of clinical studies on gallotannin containing natural sources is not adequate; therefore, further studies on the potential adverse effects that might be associated with high gallotannin consumption are needed. Consequently, it can be concluded as tannins in optimal doses have promising effects for human health; however, high amount of tannins is not recommended due to its possible risk in cancer induction, anti-nutritional effects, and other adverse reactions.

Keywords

Tannin Gallotannin Tannic acid Bioactivity Safety 

Abbreviations

PGG

β-1,2,3,4,6-pentagalloyl-O-d-glucopyranose

References

  1. Arapitsas P (2012) Hydrolyzable tannin analysis in food. Food Chem 135:1708–1717.  https://doi.org/10.1016/j.foodchem.2012.05.096PubMedCrossRefGoogle Scholar
  2. Aviram M, Dornfeld L, Rosenblat M et al (2000) Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr 71:1062–1076.  https://doi.org/10.1093/ajcn/71.5.1062PubMedCrossRefGoogle Scholar
  3. Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557.  https://doi.org/10.1039/c5ra01911gCrossRefGoogle Scholar
  4. Barreto JC, Trevisan MTS, Hull WE et al (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J Agric Food Chem 56:5599–5610.  https://doi.org/10.1021/jf800738rPubMedCrossRefGoogle Scholar
  5. Bellotti N, del Amo B, Romagnoli R (2012) Caesalpinia spinosa tannin derivatives for antifouling formulations. Procedia Mater Sci 1:259–265.  https://doi.org/10.1016/j.mspro.2012.06.035CrossRefGoogle Scholar
  6. Bensky D, Clavey S, Stoëger (1993) Chinese Herbal Materia Medica. Eastland Press, Seattle, WAGoogle Scholar
  7. Bin-Chuan JI, Hsu WH, Yang JS, et al (2009) Gallic acid induces apoptosis via Caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo http://pubs.acs.org. J Agric Food Chem 57:7596–7604.  https://doi.org/10.1021/jf901308pPubMedCrossRefGoogle Scholar
  8. Can ÖD, Turan N, Demir Özkay Ü, Öztürk Y (2017) Antidepressant-like effect of gallic acid in mice: dual involvement of serotonergic and catecholaminergic systems. Life Sci 190:110–117.  https://doi.org/10.1016/j.lfs.2017.09.023PubMedCrossRefGoogle Scholar
  9. Chhillar R, Dhingra D (2013) Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam Clin Pharmacol 27:409–418CrossRefGoogle Scholar
  10. Daglia M, Lorenzo A, Nabavi S et al (2014) Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol 15:362–372.  https://doi.org/10.2174/138920101504140825120737PubMedCrossRefGoogle Scholar
  11. De Nigris F, Williams-Ignarro S, Lerman LO et al (2005) Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc Natl Acad Sci U S A 102:4896–4901.  https://doi.org/10.1073/pnas.0500998102PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dewick PM, Haslam E (1968) Observations on the biosynthesis of gallic acid and caffeic acid. Chem Commun (London) 18:673–675Google Scholar
  13. Dewick PM, Haslam E (1969) Phenol biosynthesis in higher plants. Gallic acid. Biochem J 113(3):537–542PubMedPubMedCentralCrossRefGoogle Scholar
  14. Deáková Z, Országhová Z, Andrezálová L, Slezák P, Lehotay J, Muchová J (2015) Influence of oak wood polyphenols on cysteine, homocysteine and glutathione total levels and PON1 activities in human adult volunteers – a pilot study. Gen Physiol Biophys 34:73–80PubMedCrossRefGoogle Scholar
  15. Diemunsch AM, Mathis C (1987) Effet vasoconstricteur de l’hamamélis en application externe. STP Pharma 3:111–114Google Scholar
  16. EMEA (2009) European medicines agency evaluation of medicines for human use. Assessment report on Hamamelis virginiana L., cortex Hamamelis virginiana L., folium Hamamelis virginiana L., folium et cortex aut Ramunculus destillatum. London, Doc. Ref.: EMA/HMPC/114585/2008Google Scholar
  17. Fan H, Zheng L, Lai Y, Lu W, Yan Z, Xiao Q, Li B, Tang M, Huang D, Wang Y, Li Z, Mei Y, Jiang Z, Liu X, Tang Q, Zuo D, Ye J, Yang Y, Huang H, Tang Z, Xiao J, China Irritable Bowel Syndrome Consortium (2017) Tongxie formula reduces symptoms of irritable bowel syndrome. Clin Gastroenterol Hepatol 15(11):1724–1732PubMedCrossRefGoogle Scholar
  18. Feldman KS, Sahasrabudhe K, Lawlor MD et al (2001) In vitro and in vivo inhibition of LPS-stimulated tumor necrosis factor-alpha secretion by the gallotannin beta-d-pentagalloylglucose. Bioorg Med Chem Lett 11:1813–1815PubMedCrossRefGoogle Scholar
  19. Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC (2014) Safety assessment of Vitis vinifera (grape)-derived ingredients as used in cosmetics. Int J Toxicol 33:48S–83SPubMedCrossRefGoogle Scholar
  20. Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa, K, Sekiguchi, K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Yaegashi N, Kase Y, Arai H (2009) A traditional medicinal herb Paeonia suffruticosaand its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitroand in vivo. J Neurochem 109:1648–1657Google Scholar
  21. Gali HU, Perchellet EM, Perchellet J (1991) Inhibition of tumor promoter-induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo. Cancer Res 51(11):2820–2825PubMedGoogle Scholar
  22. Gan R-Y, Kong K-W, Li H-B et al (2018) Separation, identification, and bioactivities of the main gallotannins of red sword bean (Canavalia gladiata) coats. Front Chem 6:1–10.  https://doi.org/10.3389/fchem.2018.00039CrossRefGoogle Scholar
  23. Gloor M, Reichling J, Wasik B, Holzgang HE (2002) Antiseptic effect of a topical dermatological formulation that contains Hamamelis distillate and urea. Forsch Komplementarmed Klass Naturheilkd 9(3):153–159PubMedGoogle Scholar
  24. Guil-Guerrero JL, Ramos L, Moreno C, Zúñiga-Paredes JC, Carlosama-Yepez M, Ruales P (2016) Antimicrobial activity of plant-food by products: a review focusing on the tropics. Livest Sci 189:32–49CrossRefGoogle Scholar
  25. Gururaja G, Mundkinajeddu D, Kumar A et al (2017) Evaluation of cholesterol-lowering activity of standardized extract of Mangifera indica in albino Wistar rats. Pharm Res 9:21.  https://doi.org/10.4103/0974-8490.199770CrossRefGoogle Scholar
  26. Hajmohammadi Z, Heydari M, Nimrouzi M, Faridi P, Zibaeenezhad MJ, Omranie GR, Shams M (2018) Rhus coriaria L. increases serum apolipoprotein-A1 and high-density lipoprotein cholesterol levels: a double-blind placebo-controlled randomized clinical trial. J Integr Med 16(1):45–50PubMedCrossRefGoogle Scholar
  27. Hartman RE, Shah A, Fagan AM et al (2006) Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 24:506–515.  https://doi.org/10.1016/j.nbd.2006.08.006PubMedCrossRefGoogle Scholar
  28. He Q, Shi B, Yao K (2006) Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chem 95:250–254.  https://doi.org/10.1016/j.foodchem.2004.11.055CrossRefGoogle Scholar
  29. Horvathova M, Orszaghova Z, Laubertova L, Vavakova M, Sabaka P, Rohdewald P et al (2014) Effect of the French oak wood extract Robuvit on markers of oxidative stress and activity of antioxidant enzymes in healthy volunteers: a pilot study. Oxidative Med Cell Longev 2014:639868CrossRefGoogle Scholar
  30. Hseu YC, Chang WH, Chen CS et al (2008) Antioxidant activities of Toona sinensis leaves extracts using different antioxidant models. Food Chem Toxicol 46:105–114.  https://doi.org/10.1016/j.fct.2007.07.003PubMedCrossRefGoogle Scholar
  31. Huh JE, Lee EO, Kim MS et al (2005) Penta-O-galloyl-beta-d-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis 26:1436–1445.  https://doi.org/10.1093/carcin/bgi097PubMedCrossRefGoogle Scholar
  32. Jiamboonsri P, Pithayanukul P, Bavovada R et al (2015) Factors influencing oral bioavailability of Thai mango seed kernel extract and its key phenolic principles. Molecules 20:21254–21273.  https://doi.org/10.3390/molecules201219759PubMedPubMedCentralCrossRefGoogle Scholar
  33. Karas D, Ulrichová J, Valentová K (2017) Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 105:223–240.  https://doi.org/10.1016/j.fct.2017.04.021PubMedCrossRefGoogle Scholar
  34. Kaur M, Velmurugan B, Rajamanickam S et al (2009) Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm Res 26:2133–2140.  https://doi.org/10.1007/s11095-009-9926-yPubMedPubMedCentralCrossRefGoogle Scholar
  35. Kawada M, Ohno Y, Ri Y et al (2001) Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anti-Cancer Drugs 12:847–852PubMedCrossRefGoogle Scholar
  36. Kim YH, Yang X, Yamashita S et al (2015) 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranose increases a population of T regulatory cells and inhibits IgE production in ovalbumin-sensitized mice. Int Immunopharmacol 26:30–36.  https://doi.org/10.1016/j.intimp.2015.02.025PubMedCrossRefGoogle Scholar
  37. Kim H, Barnes R, Fang C, Talcott S, Mertens-Talcott SU (2017) Intestinal microbiota and host metabolism respond differentially in lean and obese individuals following six-week consumption of galloyl derivatives from mango (Mangifera Indica L.) pulp. FASEB J 31(1):431–433Google Scholar
  38. Kiss AK, Piwowarski J (2016) Ellagitannins, gallotannins and their metabolites- the contribution to the anti-inflammatory effect of food products and medicinal plants. Curr Med Chem 25:1–22.  https://doi.org/10.2174/0929867323666160919111559CrossRefGoogle Scholar
  39. Kobayashi M, Matsui-Yuasa I, Fukuda-Shimizu M et al (2013) Effect of mango seed kernel extract on the adipogenesis in 3T3-L1 adipocytes and in rats fed a high fat diet. Health (Irvine Calif) 5:9–15.  https://doi.org/10.4236/health.2013.58A3002CrossRefGoogle Scholar
  40. Korting HC, Schäfer-Korting M, Hart H, Laux P, Schmid M (1993) Anti-inflammatory activity of hamamelis distillate applied topically to the skin. Influence of vehicle and dose. Eur J Clin Pharmacol 44(4):315–318PubMedCrossRefGoogle Scholar
  41. Kossah R, Zhang H, Chen W (2011) Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control 22:128–132.  https://doi.org/10.1016/j.foodcont.2010.06.002CrossRefGoogle Scholar
  42. Kujawski R, Kujawska M, Marcin O et al (2016) Perspectives for gallotannins neuroprotective potential – current experimental evidences. J Med Sci 85:313–318.  https://doi.org/10.20883/jms.2016.172CrossRefGoogle Scholar
  43. Kuo P-T, Lin T-P, Liu L-C et al (2009) Penta- O -galloyl-β- d -glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression. J Agric Food Chem 57:3331–3339.  https://doi.org/10.1021/jf803725hPubMedCrossRefGoogle Scholar
  44. Lau S, Wahn J, Schulz G, Sommerfeld C, Wahn U (2002) Placebo-controlled study of the mite allergen-reducing effect of tannic acid plus benzyl benzoate on carpets in homes of children with house dust mite sensitization and asthma. Pediatr Allergy Immunol 13(1):31–36PubMedCrossRefGoogle Scholar
  45. Lee HJ, Jeong SJ, Lee HJ et al (2011) 1,2,3,4,6-Penta-O-galloyl-beta-d-glucose reduces renal crystallization and oxidative stress in a hyperoxaluric rat model. Kidney Int 79:538–545.  https://doi.org/10.1038/ki.2010.458PubMedCrossRefGoogle Scholar
  46. Li Z, Henning SM, Lee RP, Lu QY, Summanen PH, Thames G et al (2015) Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct 6:2487–2495PubMedCrossRefGoogle Scholar
  47. Ling Poon S, Leu SF, Hsu HK et al (2005) Regulatory mechanism of Toona sinensis on mouse leydig cell steroidogenesis. Life Sci 76:1473–1487.  https://doi.org/10.1016/j.lfs.2004.08.026CrossRefGoogle Scholar
  48. Lluís L, Muñoz M, Nogués MR, Sánchez-Martos V, Romeu M, Giralt M et al (2011) Toxicology evaluation of a procyanidin-rich extract from grape skins and seeds. Food Chem Toxicol 49:1450–1454PubMedCrossRefGoogle Scholar
  49. Lu Z, Nie G, Belton PS et al (2006) Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:263–274.  https://doi.org/10.1016/j.neuint.2005.10.010PubMedCrossRefGoogle Scholar
  50. Lu C, Luo X, Lu L, Li H, Chen X, Ji Y (2013) Preliminary extraction of tannins by 1-butyl-3-methylimidazole bromide and its subsequent removal from Galla chinensis extract using macroporous resins. J Sep Sci 36:959–964PubMedCrossRefGoogle Scholar
  51. Luo F, Fu Y, Xiang Y et al (2014) Identification and quantification of gallotannins in mango (Mangifera indica L.) kernel and peel and their antiproliferative activities. J Funct Foods 8:282–291.  https://doi.org/10.1016/j.jff.2014.03.030CrossRefGoogle Scholar
  52. Ma H, Liu W, Frost L et al (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 7:2213–2222.  https://doi.org/10.1039/c6fo00169fPubMedPubMedCentralCrossRefGoogle Scholar
  53. Makare N, Bodhankar S, Rangari V (2001) Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. J Ethnopharmacol 78:133–137.  https://doi.org/10.1016/S0378-8741(01)00326-9PubMedCrossRefGoogle Scholar
  54. Margină D, Ilie M, Grădinaru D, Androutsopoulos VP, Kouretas D, Tsatsakis AM (2015) Natural products-friends or foes? Toxicol Lett 236:154–167PubMedCrossRefGoogle Scholar
  55. Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:1.  https://doi.org/10.1155/2015/905215CrossRefGoogle Scholar
  56. Miguel MG, Faleiro ML, Guerreiro AC, Antunes MD (2014) Arbutus unedo L.: chemical and biological properties. Molecules 19:15799–15823.  https://doi.org/10.3390/molecules191015799PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mohan CG, Viswanatha GL, Savinay G et al (2013) 1,2,3,4,6 Penta-O-galloyl-β-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11β-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice. Phytomedicine 20:417–426.  https://doi.org/10.1016/j.phymed.2012.12.020PubMedCrossRefGoogle Scholar
  58. Nepka C, Sivridis E, Antonoglou O et al (1999) Chemopreventive activity of very low dose dietary tannic acid administration in hepatoma bearing C3H male mice. Cancer Lett 141:57–62.  https://doi.org/10.1016/S0304-3835(99)00145-7PubMedCrossRefGoogle Scholar
  59. Nithitanakool S, Pithayanukul P, Bavovada R (2009) Antioxidant and hepatoprotective activities of Thai mango seed kernel extract. Planta Med 75:1118–1123.  https://doi.org/10.1055/s-0029-1185507PubMedCrossRefGoogle Scholar
  60. Okuda T, Ito H (2011) Tannins of constant structure in medicinal and food plants-hydrolyzable tannins and polyphenols related to tannins. Molecules 16:2191–2217.  https://doi.org/10.3390/molecules16032191PubMedCentralCrossRefGoogle Scholar
  61. Okuda T, Yoshida T, Hatano T (1993) Classification of oligomeric hydrolysable tannins and specificity of their occurrence in plants. Phytochemistry 32(3):507–521CrossRefGoogle Scholar
  62. Okuda T, Yoshida T, Hatano T (2000) Correlation of oxidative transformations of hydrolyzable tannins and plant evolution. Phytochemistry 55:513–529.  https://doi.org/10.1016/S0031-9422(00)00232-6PubMedCrossRefGoogle Scholar
  63. Oliveira BG, Costa HB, Ventura JA, Kondratyuk TP, Barroso ME, al CRM (2016) Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS). Food Chem 204:37–45PubMedCrossRefGoogle Scholar
  64. Perveen R, Funk K, Thuma J et al (2011) A novel small molecule 1,2,3,4,6-penta-O-galloyl-α-d-glucopyranose mimics the antiplatelet actions of insulin. PLoS One 6.  https://doi.org/10.1371/journal.pone.0026238PubMedPubMedCentralCrossRefGoogle Scholar
  65. Quattrocchi U (2012) World dictionary of medicinal and poisonous plants. CRC Press, Boca RatonCrossRefGoogle Scholar
  66. Rajan S, Suganya H, Thirunalasundari T, Jeeva S (2012) Antidiarrhoeal efficacy of Mangifera indica seed kernel on Swiss albino mice. Asian Pac J Trop Med 5:630–633.  https://doi.org/10.1016/S1995-7645(12)60129-1PubMedCrossRefGoogle Scholar
  67. Ren A, Zhang W, Thomas HG, Barish A, Berry S, Kiel JS, Naren AP (2011) A tannic acid-based medical food, Cesinex®, exhibits broad-spectrum antidiarrheal properties: a mechanistic and clinical study. Dig Dis Sci 57(1):99–108PubMedPubMedCentralCrossRefGoogle Scholar
  68. Romani A, Pinelli P, Galardi C et al (2002) Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L. Phytochem Anal 13:79–86.  https://doi.org/10.1002/pca.627PubMedCrossRefGoogle Scholar
  69. Sahar AMH, Heba HB, Irmgard M, Mahmoud AMN (1997) Tannins from the leaves of Punica granatum. Phytochemistry 45:819–823CrossRefGoogle Scholar
  70. Saijo R, ichiro NG, Nishioka I (1990) Gallic acid esters of bergenin and norbergenin from Mallotus japonicus. Phytochemistry 29:267–270.  https://doi.org/10.1016/0031-9422(90)89047-DCrossRefGoogle Scholar
  71. Sarıözlü NY, Kıvanç M (2009) Isolation of gallic acid-producing microorganisms and their use in the production of gallic acid from gall nuts and sumac. Afr J Biotechnol 8:1110–1115Google Scholar
  72. Serrano J, Casanova-Martí À, Gil-Cardoso K, Blay MT, Terra X, Pinent M et al (2016) Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food Funct 7:483–490PubMedCrossRefGoogle Scholar
  73. Sieniawska E (2015) Activities of tannins – from In Vitro studies to clinical trials. Nat Prod Commun 10:1877–1884PubMedGoogle Scholar
  74. Sieniawska E, Baj T (2016) Chapter 10 Tannins. In “Pharmacognosy Fundamentals, Applications and Strategies” 1st edition. Badal, S., Delgoda, R., Eds.; Academic Press: Cambridge, MA, USAGoogle Scholar
  75. Smeriglio A, Tomaino A, Trombetta D (2014) Herbal products in pregnancy: experimental studies and clinical reports. Phytother Res 28:1107–1116PubMedCrossRefGoogle Scholar
  76. Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174:1244–1262PubMedCrossRefGoogle Scholar
  77. Stashia ERA (2013) The extraction of essential oil from Quercus infectoria (Manjakani) galls using supercritical carbon dioxide pressure swing technique. Masters thesis, Universiti Teknologi Malaysia, Faculty of Chemical EngineeringGoogle Scholar
  78. Tayel AA, El-Tras WF, Abdel-Monem OA et al (2013) Production of anticandidal cotton textiles treated with oak gall extract. Rev Argent Microbiol 45:271–276.  https://doi.org/10.1016/S0325-7541(13)70036-1PubMedCrossRefGoogle Scholar
  79. Tewari D, Mocan A, Parvanov ED et al (2017) Corrigendum to: ethnopharmacological approaches for therapy of jaundice: part II. Highly used plant species from Acanthaceae, Euphorbiaceae, Asteraceae, Combretaceae, and Fabaceae families. Front Pharmacol 8:1–14.  https://doi.org/10.3389/fphar.2017.00690CrossRefGoogle Scholar
  80. Turati F, Rossi M, Pelucchi C, Levi F, La Vecchia C (2015) Fruit and vegetables and cancer risk: a review of southern European studies. Br J Nutr 113:S102–S110PubMedCrossRefGoogle Scholar
  81. Türk G, Sönmez M, Aydin M et al (2008) Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin Nutr 27:289–296.  https://doi.org/10.1016/j.clnu.2007.12.006PubMedCrossRefGoogle Scholar
  82. Viswanatha GL, Shylaja H, Mohan CG (2013) Alleviation of transient global ischemia/reperfusion-induced brain injury in rats with 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose isolated from Mangifera indica. Eur J Pharmacol 720:286–293.  https://doi.org/10.1016/j.ejphar.2013.10.016PubMedCrossRefGoogle Scholar
  83. Waghulde H, Mohan M, Kasture S, Balaraman R (2010) Punica granatum attenuates angiotensin-II induced hypertension in wistar rats. Int J PharmTech Res 2:60–67Google Scholar
  84. Wang X, Jun YY, Zhao G (2014) Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr 111:1–11PubMedCrossRefGoogle Scholar
  85. Wang D, özen C, Abu-Reidah IM et al (2018) Vasculoprotective effects of pomegranate (Punica granatum L.). Front Pharmacol 9:1–15.  https://doi.org/10.3389/fphar.2018.00544CrossRefGoogle Scholar
  86. Wu Y, Ding W, Jia L, He Q (2015) The rheological properties of tara gum (Caesalpinia spinosa). Food Chem 168:366–371.  https://doi.org/10.1016/j.foodchem.2014.07.083PubMedCrossRefGoogle Scholar
  87. Xiao HT, Lin CY, Ho DHH et al (2013) Inhibitory effect of the gallotannin corilagin on dextran sulfate sodium-induced murine ulcerative colitis. J Nat Prod 76:2120–2125.  https://doi.org/10.1021/np4006772PubMedCrossRefGoogle Scholar
  88. Yang Y, Wang Z, Wu J, Chen Y (2011) Chemical constituents of plants from the genus Geum. Chem Biodivers 8:203–222.  https://doi.org/10.1002/cbdv.201500043CrossRefGoogle Scholar
  89. Zhang J, Li L, Kim SH et al (2009) Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm Res 26:2066–2080.  https://doi.org/10.1007/s11095-009-9932-0PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zhao T, Sun Q, Lovato A et al (2013) In vivo efficacy of the PARG inhibitor Gallotannin against triple negative breast cancer. Cancer Res 73:5515 LP–5515515Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Pharmacognosy, Faculty of PharmacyGazi UniversityAnkaraTurkey
  2. 2.Department of ScienceUniversità degli Studi della BasilicataPotenzaItaly

Personalised recommendations