Advertisement

Industrial Applications of Cyclodextrins

  • Qian WangEmail author
Living reference work entry

Abstract

Possessing a cage-like supramolecular structure with hydrophilic outside and hydrophobic inside, cyclodextrins (CDs) could accommodate various organic or inorganic compounds in their cavities and, therefore, have very important applications in foods, pharmaceutical, daily chemicals, environmental protection, and so on, playing the roles as quality improvers, stabilizers, adsorbents, or drug carriers. Unwittingly, everyone uses CDs in their daily life as invisible constituents of common food products as well as in numerous cosmetic and toiletry goods and textiles and as enabling excipients in various medical products. This chapter will disclose the broad industrial applications of CDs at present. The various applications of CDs in foods and food packaging will be recounted in the first section. The second part will be devoted to the pharmaceutical applications of CDs, and the applications of CDs in daily chemicals such as cosmetics and textile will be briefly summarized as the third section at the end of this chapter.

Abbreviations

HP-β-CD

Hydroxypropyl-β-CD

Me-β-CD

Methylated β-CD

RM-β-CD

Randomly methylated β-CD

SBE-β-CD

Sulfobutylether β-CD

HP-γ-CD

Hydroxypropyl-γ-CD

DM-β-CD

Heptakis (2,6-di-O-methyl)-β-CD

HE-β-CD

Hydroxyethyl-β-CD

PUFA

Polyunsaturated fatty acid

Notes

Acknowledgment

We thank Scientific Research Foundation of Tianjin Municipal Education Commission (160021) for financial support.

References

  1. 1.
    Jeang CL, Lin DG, Hsieh SH (2005) Characterization of cyclodextrin glysosyltranfesare of the same gene expressed from Bacillus macerans, Bacillus subtilis and Escherichia coli. J Agric Food Chem 53:6301–6304PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640CrossRefGoogle Scholar
  3. 3.
    Saenger W (1983) Sterochemistry of circularly closed oligosaccharides: cyclodextrins structure and function. Biochem Soc Trans 11:136–139PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Frömming KH, Szejtli J (1994) Cyclodextrins in pharmacy. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. 5.
    Martín del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046CrossRefGoogle Scholar
  6. 6.
    Fenyvesi E, Vikmon M, Szente L (2016) Cyclodextrins in food technology and human nutrition: benefits and limitations in 2012. Crit Rev Food Sci Nutr 56:1981–2004PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Jin ZY, Xu XM, Chen HQ, Li XH (2013) Cyclodextrin chemistry: preparation and application. Chemistry Industry Press, BeijingGoogle Scholar
  8. 8.
    Szente L, Harangi J, Greiner M, Mandel F (2006) Cyclodextrins found in enzyme- and heat-processed starch-containing foods. Chem Biodivers 3:1004–1014PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Arias M, García-Falcón MS, García-Río L, Mejuto JC, Rial-Otero R, Simal-Gándara J (2007) Binding constants of oxytetracycline to animal feed divalent cations. J Food Eng 78:69–73CrossRefGoogle Scholar
  10. 10.
    Astray G, Mejuto JC, Morales J, Rial-Otero R, Simal-Gándara J (2010) Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res Int 43:1212–1218CrossRefGoogle Scholar
  11. 11.
    Li Z, Chen S, Gu Z, Chen J, Wu J (2014) Alpha-cyclodextrin: enzymatic production and food applications. Trends Food Sci Technol 35:151–160CrossRefGoogle Scholar
  12. 12.
    Hashimoto H (2002) Present status of industrial application of cyclodextrins in Japan. J Incl Phenom Macro Chem 44:57–62CrossRefGoogle Scholar
  13. 13.
    Wang J, Cao Y, Sun B, Wang C (2011) Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem 127:1680–1685CrossRefGoogle Scholar
  14. 14.
    Huang CY, Yeh TF, Hsu FL, Lin CY, Chang ST, Chang HT (2018) Xanthine oxidase inhibitory activity and thermostability of cinnamaldehyde-chemotype leaf oil of cinnamomum osmophloeum microencapsulated with β-cyclodextrin. Molecules 23:1107–1116PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Vilanova N, Solans C, Vitamin A (2015) Palmitate-β-cyclodextrin inclusion complexes: characterization, protection and emulsification properties. Food Chem 175:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Stewart DJ, Milanova RK, Zawistowski J, Wallis SH (1999) Compositions comprising phytosterol and (or) phytostanol having enhanced solubility and dispersability. WO 9:963841Google Scholar
  17. 17.
    Schwarzer J, Salacz R, Horlacher P, Kraus M, Albiez W (2011) Compositions of sugar-containing terol solids dispersions. US 8,029,845Google Scholar
  18. 18.
    Wang Y, Yang M, Guan X, Qu T, Zhang M, Wang Y, Yao W (2012) Extraction technology of sterol from deodorization distillate of corn germ oil, CN102824348. Chem Abstr 2012:1874019Google Scholar
  19. 19.
    Yu C, Qian L, Yao D, Zuo F, Li L (2011) Live lactobacillus plantarum preparation containing phytosterol and its preparation method, CN 101974427. Chem Abstr 154:276036Google Scholar
  20. 20.
    Bálint M, Rajnavölgyi É, Fenyvesi F, Ujhelyi Z, Bácskay I, Szente L, Fenyvesi É (2012) Lipid-CD complexes: beyond cholesterol. Abstract Book of 16th International Cyclodextrin Symposium, Tinajin. Meeting date: 02–06 May 2012, p PP024Google Scholar
  21. 21.
    Cao Y, He ML, Zhang YH, Wang HJ (2011) Improvement of oxidative stability of conjugated linolenic acid by complexation with beta-cyclodextrin. Micro Nano Lett 6:874–877CrossRefGoogle Scholar
  22. 22.
    Yang Y, Gu Z, Xu H, Li F, Zhang G (2010) Interaction between amylose and beta-cyclodextrin investigated by complexing with conjugated linoleic acid. J Agric Food Chem 58:5620–5624PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gao F, Zhou T, Hu Y, Lan L, Vander Heyden Y, Crommen J, Lu G, Fan G (2016) Cyclodextrin-based ultrasonic-assisted microwave extraction and HPLC-PDA-ESI-ITMSn separation and identification of hydrophilic and hydrophobic components of Polygonum cuspidatum: a green, rapid and effective process. Ind Crops Prod 80:59–69CrossRefGoogle Scholar
  24. 24.
    Parmar I, Sharma S (2015) Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology. J Food Sci Technol 52:2202–2210PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cui L, Liu Y, Liu T, Yuan Y, Yue T, Cai R, Wang Z (2017) Extraction of epigallocatechin gallate and epicatechin gallate from tea leaves using β-cyclodextrin. J Food Sci 82:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Del Valle EMM (2004) Cyclodextrins and their uses. Process Biochem 39:1033–1046CrossRefGoogle Scholar
  27. 27.
    López-Nicolás JM, García-Carmona F (2007) Use of cyclodextrins as secondary antioxidants to improve the colour of fresh pear juice. J Agric Food Chem 55:6330–6338PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    López-Nicolás JM, Andreu-Sevilla AJ, Carbonell-Barrachina A, García-Carmona F (2009) Effects of addition of alpha-cyclodextrin on the sensory quality, volatile compounds, and color parameters of fresh pear juice. J Agric Food Chem 57:9668–9675PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rocha BA, Rodrigues MR, Bueno PCP, Mello Costa-Machado AR, Oliveira Lima Leite Vaz MM, Nascimento AP, Berretta-Silva AA (2012) Preparation and thermal characterization of inclusion complex of Brazilian green propolis and hydroxypropyl-β-cyclodextrin. J Therm Anal Calorim 108:87–94CrossRefGoogle Scholar
  30. 30.
    Budryn G, Pałecz B, Rachwał-Rosiak D, Oracz J, Zaczyńska D, Belica S, Navarro-González I, Meseguer J, Pérez-Sánchez H (2015) Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chem 168:276–287PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kashanian S, Dolatabadi JEN (2009) DNA binding studies of 2-tert-butylhydroquinone (TBHQ) food additive. Food Chem 116:743–747CrossRefGoogle Scholar
  32. 32.
    Pu H, Sun Q, Tang P, Zhao L, Li Q, Liu Y, Li H (2018) Characterization and antioxidant activity of the complexes of tertiary butylhydroquinone with β-cyclodextrin and its derivatives. Food Chem 260:183–192PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yu KK, inventor (1993) Korean Ginseng Research Institute, assignee. Method for removing bitter taste of Ginseng. Korea patent, 2 Sept 1993. 930,005,196 BGoogle Scholar
  34. 34.
    Lee SK, Yu HJ, Cho NS, Park JH, Kim TH, Abdi H, Kim KH, Lee SK, inventors (2008) Bioland, Ltd., assignee. A method for preparing the inclusion complex of ginseng extract with gamma-cyclodextrin, and the composition comprising the same. U.S. patent, 23 Oct 2008. WO/2008/127063Google Scholar
  35. 35.
    Tamamoto LC, Schmidt SJ, Lee SY (2010) Sensory properties of ginseng solutions modified by masking agents. J Food Sci 75:S341–S347PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Young OA, Gupta RB, Sadooghy-Saraby S (2012) Effect of cyclodextrins on the flavor of goat milk and its youghurt. J Food Sci 77:S122–S127PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kiss T, Fenyvesi F, Bacskay I, Varadi J, Fenyvesi E, Ivanyi R, Szente L, Tosaki A, Vecsernyes M (2010) Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur J Pharm Sci 40:376–380PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Smith DM, Awad AC, Bennink MR, Gill JL (1995) Cholesterol reduction in liquid egg yolk using beta-cyclodextrin. J Food Sci 60:691–694CrossRefGoogle Scholar
  39. 39.
    Alonso L, Fontecha J, Cuesta P, Juarez M, Gilliland SE (2010) Industrial application of beta-cyclodextrin for manufacturing low cholesterol butter. Milchwissenschaft 65:36–37Google Scholar
  40. 40.
    Dias HMAM, Berbicz F, Pedrochi F, Baesso ML, Matioli G (2010) Butter cholesterol removal using different complexation methods with beta-cyclodextrin, and the contribution of photoacoustic spectroscopy to the evaluation of the complex. Food Res Intern 43:1104–1110CrossRefGoogle Scholar
  41. 41.
    Jung TH, Park HS, Kwak HS (2005) Optimization of cholesterol removal by crosslinked beta- cyclodextrin in egg yolk. Food Sci Biotechnol 14:793–797Google Scholar
  42. 42.
    Kang HG, Lee ES, Park BS (2004) Production method of eggs containing reduced cholesterol. KR 2004027191. Chem Abstr 145:102636Google Scholar
  43. 43.
    Park BS, Kang HK, Jang A (2005) Influence of feeding beta-cyclodextrin to laying hens on the egg production and cholesterol content of egg yolk. Asian-Australas J Anim Sci 18:835–840CrossRefGoogle Scholar
  44. 44.
    Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15:137–142CrossRefGoogle Scholar
  45. 45.
    Singh M, Sharma R, Banerjee U (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang Y-M, Xu Q-Y, Liu Y (2019) Molecular Recognition and Biological Application of Modified β-Cyclodextrins. Sci Chi Chem 59:1–2,  https://doi.org/10.1007/s11426-015-5408-0
  48. 48.
    Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today 21:356–362PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sharma N, Baldi A (2016) Exploring versatile applications of cyclodextrins: an overview. Drug Deliv 23:729–747CrossRefGoogle Scholar
  50. 50.
    Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech 6:E329–E357CrossRefGoogle Scholar
  51. 51.
    Carlotti ME, Sapino S, Ugazio E, Caron G (2011) On the complexation of quercetin with methyl-β-cyclodextrin: photostability and antioxidant studies. J Incl Phenom Macrocycl Chem 70:81–90CrossRefGoogle Scholar
  52. 52.
    Brewster ME, Loftsson T, Estes KS, Lin JL, Fridriksdóttir H, Bodor N (1992) Effect of various cyclodextrins on solution stability and dissolution rate of doxorubicin hydrochloride. Int J Pharm 79:289–299CrossRefGoogle Scholar
  53. 53.
    Pourmokhtar M, Jacobson GA (2005) Enhanced stability of sulfamethoxazole and trimethoprim against oxidation using hydroxypropyl-β-cyclodextrin. Pharmazie 60:837–839PubMedPubMedCentralGoogle Scholar
  54. 54.
    Coupland JN, Hayes JE (2014) Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm Res 31:2921–2939PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Szejtli J, Szente L (2005) Elimination of bitter disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61:115–125PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ono N, Miyamoto Y, Ishiguro T, Motoyama K, Hirayama F, Iohara D, Seo H, Tsuruta S, Arima H, Uekama K (2011) Reduction of bitterness of antihistaminic drugs by complexation with β-cyclodextrins. J Pharm Sci 100:1935–1943PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Stojanov M, Wimmer R, Larsen K (2011) Study of the inclusion complexes formed between cetirizine and α-, β-, and γ-cyclodextrin and evaluation on their taste-masking properties. J Pharm Sci 100:3177–3185PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Funasaki N, Uratsuji I, Okuno T, Hirota S, Neya S (2006) Masking mechanisms of bitter taste of drugs studied with ion selective electrodes. Chem Pharm Bull (Tokyo) 54:1155–1161CrossRefGoogle Scholar
  59. 59.
    Funasaki N, Sumiyoshi T, Ishikawa S, Neya S (2003) Solution structures of 1:1 complexes of oxyphenonium bromide with β- and γ-cyclodextrins. Mol Pharm 1:166–172CrossRefGoogle Scholar
  60. 60.
    Patel AR, Vavia PR (2008) Preparation and evaluation of taste masked famotidine formulation using drug/β-cyclodextrin/polymer ternary complexation approach. AAPS Pharm Sci Technol 9:544–550CrossRefGoogle Scholar
  61. 61.
    Muankaew C, Loftsson T (2018) Cyclodextrin-based formulations: a non-invasive platform for targeted drug delivery. Basic Clin Pharmacol Toxicol 122:46–55PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Loftsson T, Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A (2016) Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. J Pharm Pharmacol 68:544–555PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Loftsson T, Brewster ME (2011) Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J Pharm Pharmacol 63:1119–1135PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Leonardi D, Bombardiere ME, Salomon CJ (2013) Effects of benznidazole: cyclodextrin complexes on the drug bioavailability upon oral administration to rats. Int J Biol Macromol 62:543–548PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Marttin E, Verhoef JC, Merkus FWHM (1998) Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J Drug Target 6:17–36PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M et al. (2011) Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci 44:559–565PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Loftsson T, Järvinen T (1999) Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev 36:59–79CrossRefGoogle Scholar
  68. 68.
    Ma H, Marques C (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326CrossRefGoogle Scholar
  69. 69.
    Wadhwa G, Kumar S, Chhabra L, Mahant S, Rao R (2017) Essential oil–cyclodextrin complexes: an updated review. J Incl Phenom Macrocycl Chem 89:39–58CrossRefGoogle Scholar
  70. 70.
    Matura M, Sköld M, Börje A, Andersen KE, Bruze M, Frosch P, Goossens A, Johansen JD, Svedman C, White IR, Karlberg AT (2006) Not only oxidized R-(+)-but also S-(−)-limonene is a common cause of contact allergy in dermatitis patients in Europe. Contact Dermat 55:274–279CrossRefGoogle Scholar
  71. 71.
    Buschmann HJ, Schollmeyer E (2002) Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci 53:185–192PubMedPubMedCentralGoogle Scholar
  72. 72.
    Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046CrossRefGoogle Scholar
  73. 73.
    Shokri J, Hasanzadeh D, Ghanbarzadeh S et al (2013) The effect of beta-cyclodextrin on percutaneous absorption of commonly used Eusolex sunscreens. Drug Res 63:591–596CrossRefGoogle Scholar
  74. 74.
    Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Martel B, Morcellet M, Ruffin D, Vinet F, Weltrowski M (2002) Capture and controlled release of fragrances by CD finished textiles. J Incl Phenom Macrocycl Chem 44:439–442CrossRefGoogle Scholar
  77. 77.
    Buschmann H-J, Knittel D, Schollmeyer E (2001) New textile applications of cyclodextrins. J Incl Phenom Macrocycl Chem 40:169–172CrossRefGoogle Scholar
  78. 78.
    Rakmai J, Cheirsilp B, Mejuto JC, Simal-Gándara J, Torrado-Agrasar A (2018) Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind Crop Prod 111:219–225CrossRefGoogle Scholar
  79. 79.
    Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S (2015) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 118:156–164PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    López-Miranda S, Serrano-Martínez A, Hernández-Sánchez P, Guardiola L, Pérez-Sánchez H, Fortea I, Gabaldón JA, Núñez-Delicado E, (2016) Use of cyclodextrins to recover catechin and epicatechin from red grape pomace. Food Chem 203:379–385PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    López-Nicolás JM, Núňez-Delicado E, Sánchez-Ferrer Á, García-Carmona F (2007) Kinetic model of apple juice enzymatic browning in the presence of cyclodextrins: the use of maltosyl-β-cyclodextrin as secondary antioxidant. Food Chem 101:1164–1171CrossRefGoogle Scholar
  82. 82.
    López-Nicolás JM, Pérez-López AJ, Carbonell-Barrachina Á, García-Carmona F (2007) Use of natural and modified cyclodextrins as inhibiting agents of peach juice enzymatic browning. J Agric Food Chem 55:5312–5319PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    López-Nicolás JM, Pérez-López AJ, Carbonell-Barrachina Á, García-Carmona F (2007) Kinetic study of the activation of banana juice enzymatic browning by the addition of maltosyl-β-cyclodextrin. J Agric Food Chem 55:9655–9662PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Saokham P, Loftsson T (2017) γ-Cyclodextrin. Int J Pharm 516:278–292PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235:179–192PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G (2014) Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr Polym 110:329–337PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Skiba M, Bouchal F, Boukhris T, Bounoure F, Fessi H, Fatmi S, Chaffai N, Lahiani-Skiba M (2013) Pharmacokinetic study of an oral piroxicam formulation containing different molar ratios of β-cyclodextrins. J Incl Phenom Macrocycl Chem 75:311–314CrossRefGoogle Scholar
  88. 88.
    Sinha VR, Amita, Goel H (2010) In vivo bioavailability and therapeutic assessment of host-guest inclusion phenomena for the hydrophobic molecule etodolac: pharmacodynamic and pharmacokinetic evaluation. Sci Pharm 78:103–115PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Di Gioia S, Trapani A, Mandracchia D, De Giglio E, Cometa S, Mangini V et al (2015) Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur J Pharm Biopharm 94:180–193Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Biotechnology and Food ScienceTianjin University of CommerceTianjinChina

Personalised recommendations