Macrocycle-Based Synthetic Ion Channels

Living reference work entry


Natural ion transporters are membrane-bound proteins that play a vital role in many complex biological processes. Malfunction of these proteins is closely associated with various life-threatening diseases called channelopathies. Significant efforts have been devoted to develop transporter replacement therapies that can alleviate the symptoms of channelopathies caused by these faulty proteins. However, due to instability of proteins, much attention has been given to synthesize stable artificial ion transporters that could mimic the function of natural ion transporters. Macrocycle-based ion channels remain much attractive as it has defined cavity to accommodate specific ions and functional group diversity could be easily prepared to mimic the specific function of natural proteins. Hence, this chapter is focused on synthetic ion transporters derived from various macrocycles that transport ions through either unimolecular channels or supramolecular self-assembled channels through non-covalent interactions across the lipid bilayer. An overview of engineering of macrocycles to obtain internally functionalized channels for tuning their ion selectivity has been given. The macrocycle-based ion channels discussed are derived from cyclic peptides, crown ethers, pillar[n]arene, calix[n]arene, resorcin[n]arene, cyclodextrin, hydrazide, organic cages, and metal organic framework units.


  1. 1.
    Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc, Sunderland. Chapter 1Google Scholar
  2. 2.
    Russell JM (2000) Sodium-Potassium-Chloride Cotransport. Physiol Rev 80(1):211–276. CrossRefPubMedGoogle Scholar
  3. 3.
    Lee JH, Lee JH, Choi YR, Kang P, Choi M-G, Jeong K-S (2014) Synthetic K+/cl-selective symporter across a phospholipid membrane. J Org Chem 79(14):6403–6409. CrossRefPubMedGoogle Scholar
  4. 4.
    Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568. CrossRefPubMedGoogle Scholar
  5. 5.
    Davis JT, Okunola O, Quesada R (2010) Recent advances in the transmembrane transport of anions. Chem Soc Rev 39(10):3843–3862. CrossRefPubMedGoogle Scholar
  6. 6.
    Busschaert N, Gale PA (2013) Small-molecule lipid-bilayer anion transporters for biological applications. Angew Chem Int Ed 52(5):1374–1382. CrossRefGoogle Scholar
  7. 7.
    Ashcroft FM (1999) Ion channels and disease: Channelopathies. Academic, San Diego. Chapter 12Google Scholar
  8. 8.
    Quinton PM (2008) Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372(9636):415–417. CrossRefPubMedGoogle Scholar
  9. 9.
    Mount DB, Hoover RS, Hebert SC (1997) The molecular physiology of electroneutral cation-chloride cotransport. J Membrane Biol 158(3):177–186. CrossRefGoogle Scholar
  10. 10.
    Shen M-R, Chou C-Y, Hsu K-F, Liu H-S, Dunham PB, Holtzman EJ, Ellory JC (2001) The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc Nat Acad Sci 98(25):14714–14719. CrossRefPubMedGoogle Scholar
  11. 11.
    Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L (2010) Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nature Med 16:302. CrossRefPubMedGoogle Scholar
  12. 12.
    Ashcroft FM (2000) Ion channels and disease: channelopathies. Academic, San DiegoGoogle Scholar
  13. 13.
    Gouaux E, MacKinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310(5753):1461–1465. CrossRefPubMedGoogle Scholar
  14. 14.
    McNally BA, O’Neil EJ, Nguyen A, Smith BD (2008) Membrane transporters for anions that use a relay mechanism. J Am Chem Soc 130(51):17274–17275. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413(6852):226–230CrossRefGoogle Scholar
  16. 16.
    Gu L-Q, Dalla Serra M, Vincent JB, Vigh G, Cheley S, Braha O, Bayley H (2000) Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proc. Nat. Acad. Sci. 97(8):3959–3964. CrossRefPubMedGoogle Scholar
  17. 17.
    Dartois V, Sanchez-Quesada J, Cabezas E, Chi E, Dubbelde C, Dunn C, Granja J, Gritzen C, Weinberger D, Ghadiri MR, Parr TR (2005) Systemic antibacterial activity of novel synthetic cyclic peptides. Antimicrob Agents Chemother 49(8):3302–3310. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fernandez-Lopez S, Kim H-S, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic d,l-α-peptide architecture. Nature 412(6845):452–455CrossRefGoogle Scholar
  19. 19.
    De Santis P, Morosetti S, Rizzo R (1974) Conformational analysis of regular enantiomeric sequences. Macromolecules 7(1):52–58. CrossRefGoogle Scholar
  20. 20.
    Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366(6453):324–327CrossRefGoogle Scholar
  21. 21.
    Ghadiri MR, Granja JR, Buehler LK (1994) Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369(6478):301–304CrossRefGoogle Scholar
  22. 22.
    Montenegro J, Ghadiri MR, Granja JR (2013) Ion Channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 46(12):2955–2965. CrossRefPubMedGoogle Scholar
  23. 23.
    Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S (2012) Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem Soc Rev 41(18):6023–6041. CrossRefPubMedGoogle Scholar
  24. 24.
    Sanchez-Quesada J, Ghadiri MR, Bayley H, Braha O (2000) Cyclic peptides as molecular adapters for a pore-forming protein. J Am Chem Soc 122(48):11757–11766. CrossRefGoogle Scholar
  25. 25.
    Fletcher JT, Finlay JA, Callow ME, Callow JA, Ghadiri MR (2007) A combinatorial approach to the discovery of biocidal six-residue cyclic d,l-α-peptides against the Bacteria methicillin-resistant Staphylococcus aureus (MRSA) and E. coli and the biofouling Algae Ulva linza and Navicula perminuta. Chem Eur J 13(14):4008–4013. CrossRefPubMedGoogle Scholar
  26. 26.
    Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR (2005) Antiviral cyclic d,l-α-peptides: targeting a general biochemical pathway in virus infections. Bioorg Med Chem 13(17):5145–5153. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bamberg E, Läuger P (1974) Temperature-dependent properties of gramicidin a channels. Biochim Biophys Acta Biomembr 367(2):127–133. CrossRefGoogle Scholar
  28. 28.
    Granja JR, Ghadiri MR (1994) Channel-mediated transport of glucose across lipid bilayers. J Am Chem Soc 116(23):10785–10786. CrossRefGoogle Scholar
  29. 29.
    Sánchez-Quesada J, Sun Kim H, Ghadiri MR (2001) A synthetic pore-mediated transmembrane transport of glutamic acid. Angew Chem Int Ed 40(13):2503–2506.<2503::AID-ANIE2503>3.0.CO;2-E CrossRefGoogle Scholar
  30. 30.
    Granja JR, Ghadiri MR (1994) Channel-mediated transport of glucose across lipid bilayers. J Am Chem Soc 116(23):10785–10786. CrossRefGoogle Scholar
  31. 31.
    Suga T, Osada S, Kodama H (2012) Formation of ion-selective channel using cyclic tetrapeptides. Bioorg Med Chem 20(1):42–46. CrossRefPubMedGoogle Scholar
  32. 32.
    Helsel AJ, Brown AL, Yamato K, Feng W, Yuan L, Clements AJ, Harding SV, Szabo G, Shao Z, Gong B (2008) Highly conducting transmembrane pores formed by aromatic Oligoamide macrocycles. J Am Chem Soc 130(47):15784–15785. CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou X, Liu G, Yamato K, Shen Y, Cheng R, Wei X, Bai W, Gao Y, Li H, Liu Y, Liu F, Czajkowsky DM, Wang J, Dabney MJ, Cai Z, Hu J, Bright FV, He L, Zeng XC, Shao Z, Gong B (2012) Self-assembling subnanometer pores with unusual mass-transport properties. Nat Commun 3:949. CrossRefPubMedGoogle Scholar
  34. 34.
    Baumeister B, Sakai N, Matile S (2001) P-Octiphenyl β-barrels with Ion Channel and esterase activity org. Lett 3(26):4229–4232. CrossRefGoogle Scholar
  35. 35.
    Sakai N, Sorde N, Das G, Perrottet P, Gerard D, Matile S (2003) Synthetic multifunctional pores: deletion and inversion of anion/cation selectivity using pM and pH. Org Biomol Chem 1(7):1226–1231. CrossRefPubMedGoogle Scholar
  36. 36.
    Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387(6633):580–583. CrossRefGoogle Scholar
  37. 37.
    Gu L-Q, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature (London) 398(6729):686–690CrossRefGoogle Scholar
  38. 38.
    Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science (Washington, D C) 280(5360):69–77. CrossRefGoogle Scholar
  39. 39.
    Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300(5616):108–112. CrossRefPubMedGoogle Scholar
  40. 40.
    Garcia-Fandino R, Amorin M, Castedo L, Granja JR (2012) Transmembrane ion transport by self-assembling α,γ-peptide nanotubes. Chem Sci 3(11):3280–3285. CrossRefGoogle Scholar
  41. 41.
    Wang D, Guo L, Zhang J, Jones LR, Chen Z, Pritchard C, Roeske RW (2001) Artificial ion channels formed by a synthetic cyclic peptide. J Pept Res 57(4):301–306. CrossRefPubMedGoogle Scholar
  42. 42.
    Hennig A, Fischer L, Guichard G, Matile S (2009) Anion-macrodipole interactions: self-assembling oligourea/amide macrocycles as anion transporters that respond to membrane polarization. J Am Chem Soc 131(46):16889–16895. CrossRefPubMedGoogle Scholar
  43. 43.
    Gilles A, Barboiu M (2016) Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. J Am Chem Soc 138(1):426–432. CrossRefPubMedGoogle Scholar
  44. 44.
    [a] Cazacu A, Tong C, Van der Lee A, Fyles TM, Barboiu M (2006) Columnar self-assembled Ureido crown ethers: an example of Ion-Channel Organization in lipid bilayers. J Am Chem Soc 128(29):9541–9548. [b] Barboiu M, Vaughan G, van der Lee A (2003) Self-organized heteroditopic macrocyclic superstructures. Org Lett 5(17):3073–3076.
  45. 45.
    Schneider S, Licsandru E-D, Kocsis I, Gilles A, Dumitru F, Moulin E, Tan J, Lehn J-M, Giuseppone N, Barboiu M (2017) Columnar self-assemblies of Triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. J Am Chem Soc 139(10):3721–3727. CrossRefPubMedGoogle Scholar
  46. 46.
    Zhanhu S, Mihail B, Yves-Marie L, Eddy P, Alexandru R (2015) Highly selective artificial cholesteryl crown ether K+-channels. Angew. Chem., Int. Ed. 54(48):14473–14477. CrossRefGoogle Scholar
  47. 47.
    Licsandru E, Kocsis I, Shen Y-x, Murail S, Legrand Y-M, van der Lee A, Tsai D, Baaden M, Kumar M, Barboiu M (2016) Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J Am Chem Soc 138(16):5403–5409. CrossRefPubMedGoogle Scholar
  48. 48.
    Sun Z, Gilles A, Kocsis I, Legrand Y-M, Petit E, Barboiu M (2016) Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chem Eur J 22(6):2158–2164. CrossRefPubMedGoogle Scholar
  49. 49.
    Ren C, Shen J, Zeng H (2017) Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. J Am Chem Soc 139(36):12338–12341. CrossRefPubMedGoogle Scholar
  50. 50.
    Cazacu A, Legrand Y-M, Pasc A, Nasr G, Van der Lee A, Mahon E, Barboiu M (2009) Dynamic hybrid materials for constitutional self-instructed membranes. Proc Natl Acad Sci 106(20):8117–8122. CrossRefPubMedGoogle Scholar
  51. 52.
    Barboiu M (2018) Encapsulation versus self-aggregation toward highly selective artificial K+ channels. Acc Chem Res 51(11):2711–2718. CrossRefPubMedGoogle Scholar
  52. 53.
    Voyer N, Robitaille M (1995) Novel functional artificial Ion Channel. J Am Chem Soc 117(24):6599–6600. CrossRefGoogle Scholar
  53. 54.
    Bao C, Ma M, Meng F, Lin Q, Zhu L (2015) Efficient synthetic supramolecular channels and their light-deactivated ion transport in bilayer lipid membranes. New J Chem 39(8):6297–6302. CrossRefGoogle Scholar
  54. 55.
    Zhou Y, Chen Y, Zhu P-P, Si W, Hou J-L, Liu Y (2017) Reversible photo-gated transmembrane channel assembled from an acylhydrazone-containing crown ether triad. Chem Commun 53(26):3681–3684. CrossRefGoogle Scholar
  55. 56.
    Hall CD, Kirkovits GJ, Hall AC (1999) Towards a redox-active artificial ion channel. Chem Commun 18:1897–1898. CrossRefGoogle Scholar
  56. 57.
    Murillo O, Watanabe S, Nakano A, Gokel GW (1995) Synthetic models for transmembrane channels: structural variations that Alter cation flux. J Am Chem Soc 117(29):7665–7679. CrossRefGoogle Scholar
  57. 58.
    Gokel GW (2000) Hydraphiles: design, synthesis and analysis of a family of synthetic, cation-conducting channels. Chem Commun 1:1–9. CrossRefGoogle Scholar
  58. 59.
    Gokel GW, Carasel IA (2007) Biologically active, synthetic ion transporters. Chem Soc Rev 36(2):378–389. CrossRefPubMedGoogle Scholar
  59. 60.
    Abel E, Maguire GEM, Meadows ES, Murillo O, Jin T, Gokel GW (1997) Planar bilayer conductance and fluorescence studies confirm the function and location of a synthetic, sodium-ion-Conducting Channel in a phospholipid bilayer membrane. J Am Chem Soc 119(38):9061–9062. CrossRefGoogle Scholar
  60. 61.
    Leevy WM, Huettner JE, Pajewski R, Schlesinger PH, Gokel GW (2004) Synthetic Ion Channel activity documented by electrophysiological methods in living cells. J Am Chem Soc 126(48):15747–15753. CrossRefPubMedGoogle Scholar
  61. 62.
    Abel E, Maguire GEM, Murillo O, Suzuki I, De Wall SL, Gokel GW (1999) Hydraphile channels: structural and fluorescent probes of position and function in a phospholipid bilayer. J Am Chem Soc 121(39):9043–9052. CrossRefGoogle Scholar
  62. 63.
    Gokel GW, Ferdani R, Liu J, Pajewski R, Shabany H, Uetrecht P (2001) Hydraphile channels: models for transmembrane, cation-conducting transporters. Chem Eur J 7(1):33–39.<33::AID-CHEM33>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  63. 64.
    Murillo O, Abel E, Maguire GEM, Gokel GW (1996) A tris(macrocycle) that exhibits H-bond-induced blockage of the cation channel faction in a phospholipid bilayer. Chem Commun 18:2147–2148. CrossRefGoogle Scholar
  64. 65.
    Pechulis AD, Thompson RJ, Fojtik JP, Schwartz HM, Lisek CA, Frye LL (1997) The design, synthesis and transmembrane transport studies of a biomimetic sterol-based ion channel. Bioorg Med Chem 5(10):1893–1901. CrossRefPubMedGoogle Scholar
  65. 66.
    Carmichael VE, Dutton PJ, Fyles TM, James TD, Swan JA, Zojaji M (1989) Biomimetic ion transport: a functional model of a unimolecular ion channel. J Am Chem Soc 111(2):767–769. CrossRefGoogle Scholar
  66. 67.
    Fyles TM, James TD, Pryhitka A, Zojaji M (1993) Assembly of ion channel mimics from a modular construction set. J Org Chem 58(26):7456–7468. CrossRefGoogle Scholar
  67. 68.
    Fyles TM, James TD, Kaye KC (1993) Activities and modes of action of artificial ion channel mimics. J Am Chem Soc 115(26):12315–12321. CrossRefGoogle Scholar
  68. 69.
    Si W, Hu XB, Liu XH, Fan RH, Chen ZX, Weng LH, Hou JL (2011) Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes. Tetrahedron Lett 52(19):2484–2487. CrossRefGoogle Scholar
  69. 70.
    Si W, Chen L, Hu X-B, Tang G, Chen Z, Hou J-L, Li Z-T (2011) Selective artificial transmembrane channels for protons by formation of water wires. Angew. Chem., Int. Ed 50(52):12564–12568. CrossRefGoogle Scholar
  70. 71.
    Hu XB, Chen ZX, Tang GF, Hou JL, Li ZT (2012) Single-molecular artificial transmembrane water channels. J Am Chem Soc 134(20):8384–8387. CrossRefPubMedGoogle Scholar
  71. 72.
    Si W, Xin PY, Li ZT, Hou JL (2015) Tubular unimolecular transmembrane channels: construction strategy and transport activities. Acc Chem Res 48(6):1612–1619. CrossRefPubMedGoogle Scholar
  72. 73.
    Chen L, Si W, Zhang L, Tang GF, Li ZT, Hou JL (2013) Chiral selective transmembrane transport of amino acids through artificial channels. J Am Chem Soc 135(6):2152–2155. CrossRefPubMedGoogle Scholar
  73. 74.
    Si W, Li ZT, Hou JL (2014) Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Angew Chem Int Ed 53(18):4578–4581. CrossRefGoogle Scholar
  74. 75.
    Zhang M, Zhu P-P, Xin P, Si W, Li Z-T, Hou J-L (2017) Synthetic Channel specifically inserts into the lipid bilayer of gram-positive Bacteria but not that of mammalian erythrocytes. Angew Chem Int Ed 56(11):2999–3003. CrossRefGoogle Scholar
  75. 76.
    Chen J-Y, Haoyang W-W, Zhang M, Wu G, Li Z-T, Hou J-L (2018) A synthetic channel that efficiently inserts into mammalian cell membranes and destroys cancer cells. Faraday Discuss. CrossRefGoogle Scholar
  76. 77.
    Feng W-X, Sun Z, Zhang Y, Legrand Y-M, Petit E, Su C-Y, Barboiu M (2017) Bis-15-crown-5-ether-pillar[5]arene K+-responsive channels. Org Lett 19(6):1438–1441. CrossRefPubMedGoogle Scholar
  77. 78.
    Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen CP (2019) Artificial K+ channels formed by Pillararene-Cyclodextrin hybrid molecules: tuning cation selectivity and generating membrane potential. Angew Chem Int Ed Engl 58(9):2779–2784. CrossRefPubMedGoogle Scholar
  78. 79.
    Xin PY, Zhang L, Su P, Hou JL, Li ZT (2015) Hydrazide macrocycles as effective transmembrane channels for ammonium. Chem Commun 51(23):4819–4822. CrossRefGoogle Scholar
  79. 80.
    Xin P, Tan S, Sun Y, Ren Q, Dong W, Guo J, Jiang T, Chen C-P (2017) One-pot formation of hydrazide macrocycles with modified cavities: an example of pH-sensitive unimolecular cation channels. Chem Commun 53(38):5322–5325. CrossRefGoogle Scholar
  80. 81.
    Xin P, Tan S, Wang Y, Sun Y, Wang Y, Xu Y, Chen C-P (2017) Functionalized hydrazide macrocycle ion channels showing pH-sensitive ion selectivities. Chem Commun 53(3):625–628. CrossRefGoogle Scholar
  81. 82.
    de Mendoza J, Cuevas F, Prados P, Meadows ES, Gokel GW (1998) A synthetic cation-transporting calix[4]arene derivative active in phospholipid bilayers. Angew Chem Int Ed 37(11):1534–1537.<1534::AID-ANIE1534>3.0.CO;2-B CrossRefGoogle Scholar
  82. 83.
    Maulucci N, De Riccardis F, Botta CB, Casapullo A, Cressina E, Fregonese M, Tecilla P, Izzo I (2005) Calix[4]arene-cholic acid conjugates: a new class of efficient synthetic ionophores. Chem Commun (10):1354–1356.
  83. 84.
    Iqbal KSJ, Cragg PJ (2007) Transmembrane ion transport by calixarenes and their derivatives. Dalton Trans (1):26–32.
  84. 85.
    Iqbal KSJ, Allen MC, Fucassi F, Cragg PJ (2007) Artificial transmembrane ion channels from commercial surfactants. Chem Commun 38:3951–3953. CrossRefGoogle Scholar
  85. 86.
    Lawal O, Iqbal KSJ, Mohamadi A, Razavi P, Dodd HT, Allen MC, Siddiqui S, Fucassi F, Cragg PJ (2009) An artificial sodium ion channel from calix[4]arene in the 1,3-alternate conformation. Supramol Chem 21(1–2):55–60. CrossRefGoogle Scholar
  86. 87.
    Yoshino N, Satake A, Kobuke Y (2001) An artificial ion channel formed by a macrocyclic resorcin[4]arene with amphiphilic cholic acid ether groups. Angew Chem Int Ed 40(2):457–459.<457::AID-ANIE457>3.0.CO;2-F CrossRefGoogle Scholar
  87. 88.
    Tanaka Y, Kobuke Y, Sokabe M (1995) A non-peptidic ion channel with K+ selectivity. Angew Chem Int Ed Engl 34(6):693–694. CrossRefGoogle Scholar
  88. 89.
    Wright AJ, Matthews SE, Fischer WB, Beer PD (2001) Novel resorcin[4]arenes as potassium-selective ion-channel and transporter mimics. Chem Eur J 7(16):3474–3481.<3474::AID-CHEM3474>3.0.CO;2-6 CrossRefPubMedGoogle Scholar
  89. 90.
    Paquet V, Zumbuehl A, Carreira EM (2006) Biologically active amphotericin B-calix[4]arene conjugates. Bioconjug Chem 17(6):1460–1463. CrossRefPubMedGoogle Scholar
  90. 91.
    Jin T (2000) Photocontrol of Na+ transport across a phospholipid bilayer containing a bisanthroylcalix[4]arene carrier. Chem Commun (Cambridge) (15):1379–1380.
  91. 92.
    Davis JT, Okunola O, Quesada R (2010) Recent advances in the transmembrane transport of anions. Chem Soc Rev 39(10):3843–3862. CrossRefPubMedGoogle Scholar
  92. 93.
    Okunola OA, Seganish JL, Salimian KJ, Zavalij PY, Davis JT (2007) Membrane-active calixarenes: toward ‘gating’ transmembrane anion transport. Tetrahedron 63(44):10743–10750. CrossRefGoogle Scholar
  93. 94.
    Sidorov V, Kotch FW, Kuebler JL, Lam Y-F, Davis JT (2003) Chloride transport across lipid bilayers and transmembrane potential induction by an Oligophenoxyacetamide. J Am Chem Soc 125(10):2840–2841. CrossRefPubMedGoogle Scholar
  94. 95.
    Sidorov V, Kotch FW, Abdrakhmanova G, Mizani R, Fettinger JC, Davis JT (2002) Ion Channel formation from a calix[4]arene amide that binds HCl. J Am Chem Soc 124(10):2267–2278. CrossRefPubMedGoogle Scholar
  95. 96.
    Seganish JL, Santacroce PV, Salimian KJ, Fettinger JC, Zavalij P, Davis JT (2006) Regulating supramolecular function in membranes: calixarenes that enable or inhibit transmembrane cl¯ transport. Angew Chem Int Ed 45(20):3334–3338. CrossRefGoogle Scholar
  96. 97.
    Izzo I, Licen S, Maulucci N, Autore G, Marzocco S, Tecilla P, De Riccardis F (2008) Cationic calix[4]arenes as anion-selective ionophores. Chem Commun (Cambridge, UK) (26):2986–2988.
  97. 98.
    Tabushi I, Kuroda Y, Yokota K (1982) A,C,D,F-tetrasubstituted β-cyclodextrin as an artificial channel compound. Tetrahedron Lett 23(44):4601–4604. CrossRefGoogle Scholar
  98. 99.
    Madhavan N, Robert EC, Gin MS (2005) A highly active anion-selective amino-cyclodextrin ion channel. Angew Chem Int Ed 44(46):7584–7587. CrossRefGoogle Scholar
  99. 100.
    Madhavan N, Gin MS (2007) Increasing pH causes faster anion- and cation-transport rates through a synthetic ion channel. Chembiochem 8(15):1834–1840. CrossRefPubMedGoogle Scholar
  100. 101.
    Jog PV, Gin MS (2008) A light-gated synthetic Ion Channel. Org Lett 10(17):3693–3696. CrossRefPubMedGoogle Scholar
  101. 102.
    Chadwick DJ, Cardew G (eds) (1999) Gramicidin and related ion channel-forming peptides. In: Proceedings of a symposium held at the Novartis Foundation, London, 17–19 Nov 1998. [Novartis foundation symposium, 1999; 225]. vol Copyright (C) 2016 American Chemical Society (ACS). All Rights Reserved. WileyGoogle Scholar
  102. 103.
    Reiß P, Koert U (2013) Ion-channels: goals for function-oriented synthesis. Acc Chem Res 46(12):2773–2780. CrossRefPubMedGoogle Scholar
  103. 104.
    Pfeifer JR, Reiß P, Koert U (2006) Crown ether–gramicidin hybrid ion channels: dehydration-assisted ion selectivity. Angew Chem Int Ed 45(3):501–504. CrossRefGoogle Scholar
  104. 105.
    Jeon YJ, Kim H, Jon S, Selvapalam N, Oh DH, Seo I, Park C-S, Jung SR, Koh D-S, Kim K (2004) Artificial Ion Channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. J Am Chem Soc 126(49):15944–15945. CrossRefPubMedGoogle Scholar
  105. 106.
    Benke BP, Aich P, Kim Y, Kim KL, Rohman MR, Hong S, Hwang I-C, Lee EH, Roh JH, Kim K (2017) Iodide-selective synthetic ion channels based on shape-persistent organic cages. J Am Chem Soc 139(22):7432–7435. CrossRefPubMedGoogle Scholar
  106. 107.
    Fyles TM, Tong CC (2007) Long-lived and highly conducting ion channels formed by lipophilic ethylenediamine palladium(ii) complexes. New J Chem 31(5):655–661. CrossRefGoogle Scholar
  107. 108.
    Satake A, Yamamura M, Oda M, Kobuke Y (2008) Transmembrane Nanopores from porphyrin Supramolecules. J Am Chem Soc 130(20):6314–6315. CrossRefPubMedGoogle Scholar
  108. 109.
    Boccalon M, Iengo E, Tecilla P (2012) Metal–organic transmembrane Nanopores. J Am Chem Soc 134(50):20310–20313. CrossRefPubMedGoogle Scholar
  109. 110.
    Jung M, Kim H, Baek K, Kim K (2008) Synthetic Ion Channel based on metal–organic Polyhedra. Angew Chem Int Ed 47(31):5755–5757. CrossRefGoogle Scholar
  110. 111.
    Kulikov OV, Li R, Gokel GW (2009) A synthetic Ion Channel derived from a Metallogallarene capsule that functions in phospholipid bilayers. Angew Chem Int Ed 48(2):375–377. CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations