Advertisement

Protein Self-Assembly: Strategies and Applications

  • Shanpeng Qiao
  • Junqiu LiuEmail author
Living reference work entry

Abstract

As intriguing biomacromolecules with a vast array of biodiversity and functions, proteins are well-known essential building blocks of organisms and participate in every process of cells such as metabolism, gene transcription and expression, stimuli response, and molecule transportation. However, virtually, organisms could systematically execute most important biological functions in the form of complex hierarchical complex hierarchical structures and collective properties of protein assembly. Therefore, the protein assemblies are compelling for scientists to not only understand the sophisticated, synergistic, and highly functional process of natural life but also provide a fascinating access to prepare advanced biomaterials. In decades, deep cognition of natural protein assemblies and complex has been made, which offers people a glimpse of the altruistic behaviors happen in nature and human bodies. In the meantime, there have been undergoing unexpected and rapid developments in protein assembly field using supramolecular interaction as driven forces, and various innovative design and strategies have been emerging to construct intriguing biomaterials. This chapter proposes to lead the reader to appreciate the splendid natural protein architecture, introduce the recent advances in the research field of protein assembly, and highlight several innovative design strategies for precise manipulation of proteins into extended, periodic arrays with desired morphologies and applications.

References

  1. 1.
    Iwanowski D (1892) Über die Mosaikkrankheit der Tabakspflanze. Bulletin Scientifique publié par l’Académie Impériale des Sciences de aint-Pétersbourg/Nouvelle Serie III (in German and Russian). St. Petersburg. 35: 67–70. (1942) Translated into English in Johnson, J Ed. Phytopathological classics (St. Paul, Minnesota: American Phytopathological Society) 7 th, pp 27–30Google Scholar
  2. 2.
    Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc B 354(1383):531–535CrossRefGoogle Scholar
  3. 3.
    Pollard TD, Cooper J A (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212; Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473Google Scholar
  4. 4.
    (a) Cong Y, Topf M, Sali A, Matsudaira P, Dougherty M, Chiu W, Schmid MF (2008) Crystallographic conformers of actin in a biologically active bundle of filaments. J Mol Biol 375(2):331–336; (b) Krieg E, Bastings MM, Besenius P, Rybtchinski B (2016) Supramolecular polymers in aqueous media. Chem Rev 116(4):2414–2477Google Scholar
  5. 5.
    Sept D, McCammon JA (2001) Thermodynamics and kinetics of actin filament nucleation. Biophys J 81(2):667–674CrossRefGoogle Scholar
  6. 6.
    Pollard TD (1986) Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments. J Cell Biol 103(6):2747–2754CrossRefGoogle Scholar
  7. 7.
    (a) Fujiwara I, Takahashi S, Tadakuma H, Funatsu T, Ishiwata S (2002) Microscopic analysis of polymerization dynamics with individual actin filaments. Nat Cell Biol 4(9): 666–673; (b) Bugyi B, Carlier M-F (2010) Control of actin filament treadmilling in cell motility. Annu Rev Biophys 39(1):449–470Google Scholar
  8. 8.
    Patolsky F, Weizmann Y, Willner I (2004) Actin-based metallic nanowires as bio-nanotransporters. Nat Mater 3(10):692–695CrossRefGoogle Scholar
  9. 9.
    Takatsuki H, Tanaka H, Rice KM, Kolli MB, Nalabotu SK, Kohama K, Famouri P, Blough ER (2011) Transport of single cells using an actin bundle-myosin bionanomotor transport system. Nanotechnology 22(24):245101CrossRefGoogle Scholar
  10. 10.
    Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890CrossRefGoogle Scholar
  11. 11.
    Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid-from bacteria to humans. Trends Biochem Sci 32(5):217–224CrossRefGoogle Scholar
  12. 12.
    Fitzpatrick AWP, Debelouchina GT, Bayro MJ, Clare DK, Caporini MA, Bajaj VS, Jaroniec CP, Wang L, Ladizhansky V, Muller SA, MacPhee CE, Waudby CA, Mott HR, De Simone A, Knowles TPJ, Saibil HR, Vendruscolo M, Orlova EV, Griffin RG, Dobson CM (2013) Atomic structure and hierarchical assembly of a cross-amyloid fibril. Proc Natl Acad Sci U S A 110(14):5468–5473CrossRefGoogle Scholar
  13. 13.
    Wetzel R (2006) Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res 39(9):671–679CrossRefGoogle Scholar
  14. 14.
    Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6(8):469–479CrossRefGoogle Scholar
  15. 15.
    Mankar S, Anoop A, Sen S, Maji SK (2011) Nanomaterials: amyloids reflect their brighter side. Nanotechnol Rev 2(0):6032Google Scholar
  16. 16.
    Gao N, Sun H, Dong K, Ren J, Duan T, Xu C, Qu X (2014) Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat Commun 5:3422CrossRefGoogle Scholar
  17. 17.
    Andrews SC, Arosio P, Bottke W, Briat JF, von Darl M, Harrison PM, Laulhère JP, Levi S, Lobreaux S, Yewdall SJ (1992) Structure function and evolution of ferritins. J Inorg Biochem 47(3–4):161–174CrossRefGoogle Scholar
  18. 18.
    Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X (2016) Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J Control Release 28(232):131–142CrossRefGoogle Scholar
  19. 19.
    Gerl M, Jaenicke R, Smith JM, Harrison PM (1988) Self-assembly of apoferritin from horse spleen after reversible chemical modification with 2,3-dimethylmaleic anhydride. Biochemistry 27(11):4089–4096CrossRefGoogle Scholar
  20. 20.
    Sato D, Ohtomo H, Yamada Y, Hikima T, Kurobe A, Fujiwara K, Ikeguchi M (2016) Ferritin assembly revisited: a time-resolved small-angle X-ray scattering study. Biochemistry 55(2):287–293CrossRefGoogle Scholar
  21. 21.
    Theil EC, Behera RK, Tosha T (2013) Ferritins for chemistry and for life. Coord Chem Rev 257(2):579–586CrossRefGoogle Scholar
  22. 22.
    Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR (2013) A conserved tyrosine in ferritin is a molecular capacitor. ChemBioChem 14(9):1123–1133CrossRefGoogle Scholar
  23. 23.
    Jutz G, van Rijn P, Santos Miranda B, Böker A (2015) Ferritin: a versatile building block for bionanotechnology. Chem Rev 115(4):1653–1701CrossRefGoogle Scholar
  24. 24.
    Webb B, Frame J, Zhao Z, Lee M, Watt G (1994) Molecular entrapment of small molecules within the interior of horse spleen ferritin. Arch Biochem Biophys 309(1):178–183CrossRefGoogle Scholar
  25. 25.
    Tam JP, Lu YA (1989) Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc Natl Acad Sci U S A 86(23):9084–9088CrossRefGoogle Scholar
  26. 26.
    Luo Q, Hou C, Bai Y, Wang R, Liu J (2016) Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev 116(22):13571–13632CrossRefGoogle Scholar
  27. 27.
    Dong R, Su Y, Yu S, Zhou Y, Lu Y, Zhu X (2013) A redox-responsive cationic supramolecular polymer constructed from small molecules as a promising gene vector. Chem Commun 49(84):9845–9847CrossRefGoogle Scholar
  28. 28.
    Andre I, Strauss CE, Kaplan DB, Bradley P, Baker D (2008) Emergence of symmetry in homooligomeric biological assemblies. Proc Natl Acad Sci U S A 105(42):16148–16152CrossRefGoogle Scholar
  29. 29.
    Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: using symmetry to design self assembling protein cages layers crystals and filaments. Proc Natl Acad Sci U S A 98(5):2217–2221CrossRefGoogle Scholar
  30. 30.
    Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6(12):1065–1071CrossRefGoogle Scholar
  31. 31.
    Gonen S, DiMaio F, Gonen T, Baker D (2015) Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science 348(6241):1365–1368CrossRefGoogle Scholar
  32. 32.
    King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336(6085):1171–1174CrossRefGoogle Scholar
  33. 33.
    King NP, Bale JB, Sheffler W, McNamara DE, Gonen S, Gonen T, Yeates TO, Baker D (2014) Accurate design of co-assembling multi-component protein nanomaterials. Nature 510(7503):103–108CrossRefGoogle Scholar
  34. 34.
    Ulijn RV, Woolfson DN (2010) Peptide and protein based materials in 2010: from design and structure to function and application. Chem Soc Rev 39(9):3349–3350CrossRefGoogle Scholar
  35. 35.
    Lupas AN, Gruber M (2005) The structure of alpha-helical coiled coils. Adv Protein Chem 70:37–78CrossRefGoogle Scholar
  36. 36.
    Sharp TH, Bruning M, Mantell J, Sessions RB, Thomson AR, Zaccai NR, Brady RL, Verkade P, Woolfson DN (2012) Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design. Proc Natl Acad Sci U S A 109(33):13266–13271CrossRefGoogle Scholar
  37. 37.
    Gradišar H, Božič S, Doles T, Vengust D, Hafner-Bratkovič I, Mertelj A, Webb B, Šali A, Klavžar S, Jerala R (2013) Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat Chem Biol 9(6):362–366CrossRefGoogle Scholar
  38. 38.
    Ross JF, Bridges A, Fletcher JM, Shoemark D, Alibhai D, Bray HEV, Beesley JL, Dawson WM, Hodgson LR, Mantell J, Verkade P, Edge CM, Sessions RB, Tew D, Woolfson DN (2017) Decorating self-assembled peptide cages with proteins. ACS Nano 11(8):7901–7914CrossRefGoogle Scholar
  39. 39.
    Yoshizumi A, Fletcher JM, Yu ZX, Persikov A, Bartlett GJ, Boyle AL, Vincent TL, Woolfson DN, Brodsky B (2011) Designed coiled coils promote folding of a recombinant bacterial collagen. J Biol Chem 286(20):17512–17520CrossRefGoogle Scholar
  40. 40.
    Shekhawat SS, Porter JR, Sriprasad A, Ghosh I (2009) An autoinhibited coiled-coil design strategy for split-protein protease sensors. J Am Chem Soc 131(42):15284–15290CrossRefGoogle Scholar
  41. 41.
    Rehm TH, Schmuck C (2010) Ion-pair induced self-assembly in aqueous solvents. Chem Soc Rev 39(10):3597–3611CrossRefGoogle Scholar
  42. 42.
    Miao L, Han J, Zhang H, Zhao LL, Si CY, Zhang XY, Hou CX, Luo Q, Xu JY, Liu JQ (2014) Quantum-dot-induced self-assembly of cricoid protein for light harvesting. ACS Nano 8(4):3743–3751CrossRefGoogle Scholar
  43. 43.
    Sun HC, Miao L, Li JX, Fu S, An G, Si CY, Dong ZY, Luo Q, Yu S, Xu JY, Liu JQ (2015) Self-assembly of cricoid proteins induced by “soft nanoparticles”: an approach to design multienzyme-cooperative antioxidative systems. ACS Nano 9(5):5461–5469CrossRefGoogle Scholar
  44. 44.
    Korpi A, Ma C, Liu K, Nonappa Herrmann A, Ikkala O, Kostiainen M (2018) A self-assembly of electrostatic cocrystals from supercharged fusion peptides and protein cages. ACS Macro Lett 7(3):318–323CrossRefGoogle Scholar
  45. 45.
    Miessler GL, Tarr DA (1999) Inorganic Chemistry. Prentice Hall, Englewood CliffsGoogle Scholar
  46. 46.
    Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, Xu Z, Cheng SX, Zhang XZ (2017) Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett 17(1):284–291CrossRefGoogle Scholar
  47. 47.
    Salgado E, Faraone-Mennella J, Tezcan FA (2007) Controlling protein-protein interactions through metal coordination: assembly of a 16-helix bundle protein. J Am Chem Soc 129(44):13374–13375CrossRefGoogle Scholar
  48. 48.
    Brodin J, Ambroggio X, Tang C, Parent K, Baker T, Tezcan FA (2012) Metal-directed chemically tunable assembly of one-two- and three-dimensional crystalline protein arrays. Nat Chem 4(5):375–382CrossRefGoogle Scholar
  49. 49.
    Brodin JD, Carr JR, Sontz PA, Tezcan FA (2014) Exceptionally stable redox-active supramolecular protein assemblies with emergent properties. Proc Natl Acad Sci U S A 111(8):2897–2902CrossRefGoogle Scholar
  50. 50.
    Song WJ, Tezcan FA (2014) A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346(6216):1525–1528CrossRefGoogle Scholar
  51. 51.
    Zhang W, Luo Q, Miao L, Hou CX, Bai YS, Dong ZY, Xu JY, Liu JQ (2012) Self-assembly of glutathione S-transferase into nanowires. Nanoscale 4(19):5847–5851CrossRefGoogle Scholar
  52. 52.
    Bai YS, Luo Q, Zhang W, Miao L, Xu JY, Li HB, Liu JQ (2013) Highly ordered protein nanorings designed by accurate control of glutathione S-transferase self-assembly. J Am Chem Soc 135(30):10966–10969CrossRefGoogle Scholar
  53. 53.
    Xing M, Yanli Z (2015) Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev 115(15):7794–7839CrossRefGoogle Scholar
  54. 54.
    Uhlenheuer DA, Wasserberg D, Nguyen H, Zhang L, Blum C, Subramaniam V, Brunsveld L (2009) Modulation of protein dimerization by a supramolecular host-guest system. Chem Eur J 15(35):8779–8790CrossRefGoogle Scholar
  55. 55.
    Nguyen HD, Dang DT, van Dongen JLJ, Brunsveld L (2010) Protein dimerization induced by supramolecular interactions with cucurbit[8]uril. Angew Chem Int Ed 49(5):895–898CrossRefGoogle Scholar
  56. 56.
    Hou C, Li J, Zhao L, Zhang W, Luo Q, Dong Z, Xu J, Liu J (2013) Construction of protein nanowires through cucurbit[8]uril based highly specific host-guest interactions: an approach to the assembly of functional proteins. Angew Chem Int Ed 52(21):5590–5593CrossRefGoogle Scholar
  57. 57.
    (a) Si C, Li J, Luo Q, Hou C, Pan T, Li H, Liu J (2016) An ion signal responsive dynamic protein nano-spring constructed by high ordered host-guest recognition. Chem Commun 52(14):2924–2927; (b) Wang R, Qiao S, Zhao L, Hou C, Li X, Liu Y, Luo Q, Xu J, Li H, Liu J (2017) Dynamic protein self-assembly driven by host-guest chemistry and the folding-unfolding feature of a mutually exclusive protein. Chem Commun 53(76):10532–10535Google Scholar
  58. 58.
    Li X, Bai Y, Huang Z, Si C, Dong Z, Luo Q, Liu J (2017) A highly controllable protein self-assembly system with morphological versatility induced by engineered host-guest interactions. Nanoscale 9(23):7991–7997CrossRefGoogle Scholar
  59. 59.
    Ringler P, Schulz GE (2003) Self-assembly of proteins into designed networks. Science 302(5642):106–109CrossRefGoogle Scholar
  60. 60.
    Carlson JC, Jena SS, Flenniken M, Chou TF, Siegel RA, Wagner CR (2006) Chemically controlled self-assembly of protein nanorings. J Am Chem Soc 128(23):7630–7638CrossRefGoogle Scholar
  61. 61.
    Burazerovic S, Gradinaru J, Pierron J, Ward TR (2007) Hierarchical self-assembly of one-dimensional streptavidin bundles as a collagen mimetic for the biomineralization of calcite. Angew Chem Int Ed 46(29):5510–5514CrossRefGoogle Scholar
  62. 62.
    Sakai F, Yang G, Weiss M, Liu Y, Chen G, Jiang M (2014) Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nat Commun 5:4634CrossRefGoogle Scholar
  63. 63.
    Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li X (2016) Precise and reversible protein-microtubule-like structure with helicity driven by dual supramolecular interactions. J Am Chem Soc 138(6):1932–1937CrossRefGoogle Scholar
  64. 64.
    Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, New YorkGoogle Scholar
  65. 65.
    Kulkarni S, Schilli C, Müller A, Hoffman A, Stayton P (2004) Reversible meso-scale smart polymer-protein particles of controlled sizes. Bioconjug Chem 15(4):747–753CrossRefGoogle Scholar
  66. 66.
    van Eldijk MB, Wang JC-Y, Minten IJ, Li C, Zlotnick A, Nolte RJM, Cornelissen JJLM, van Hest JCM (2012) Designing two self-assembly mechanisms into one viral capsid protein. J Am Chem Soc 134(45):18506–18509CrossRefGoogle Scholar
  67. 67.
    Huber MC, Schreiber A, von Olshausen P, Varga BR, Kretz O, Joch B, Barnert S, Schubert R, Eimer S, Kele P (2015) Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat Mater 14(1):125–132CrossRefGoogle Scholar
  68. 68.
    Huang X, Li M, Green DC, Williams DS, Patil AJ, Mann S (2013) Interfacial assembly of protein-polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat Commun 4:2239CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryJilin UniversityChangchunChina

Personalised recommendations