Advertisement

Stimuli-Responsive Self-Assembly Based on Macrocyclic Hosts and Biomedical Applications

  • Weipeng Mao
  • Da MaEmail author
Living reference work entry

Abstract

Macrocyclic hosts have been used to construct stimuli-responsive self-assembly systems. Stimuli types include pH, reducing environment, reactive oxygen species, and photo-irradiation. Self-assembled microparticles, nanoparticles, or hydrogels have versatile biomedical applications, including drug delivery, bioimaging, and theranostics. The use of macrocyclic hosts could improve the complexity of self-assembly systems. Importantly, host-guest interaction has been used as biorthogonal stimuli to other stimuli types. These macrocyclic host-based stimuli-responsive self-assembly systems have achieved unique biomedical purpose in vitro or in vivo.

References

  1. 1.
    Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev 115:7794–7839.  https://doi.org/10.1021/cr500392wCrossRefPubMedGoogle Scholar
  2. 2.
    Webber MJ, Langer R (2017) Drug delivery by supramolecular design. Chem Soc Rev 46:6600–6620.  https://doi.org/10.1039/C7CS00391ACrossRefPubMedGoogle Scholar
  3. 3.
    Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98: 2045–2076.  https://doi.org/10.1021/cr970025pCrossRefPubMedGoogle Scholar
  4. 4.
    Huang G, Li F, Zhao X et al (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117:12764–12850CrossRefGoogle Scholar
  5. 5.
    Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307.  https://doi.org/10.1021/acs.chemrev.5b00299CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhou J, Yu G, Huang F (2017) Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 46:7021–7053.  https://doi.org/10.1039/C6CS00898DCrossRefPubMedGoogle Scholar
  7. 7.
    Lu Y, Aimetti AA, Langer R, Gu Z (2016) Bioresponsive materials. Nat Rev Mater 2:16075.  https://doi.org/10.1038/natrevmats.2016.75CrossRefGoogle Scholar
  8. 8.
    Barrow SJ, Kasera S, Rowland MJ et al (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406.  https://doi.org/10.1021/acs.chemrev.5b00341CrossRefPubMedGoogle Scholar
  9. 9.
    Ogoshi T, Yamagishi TA, Nakamoto Y (2016) Pillar-shaped macrocyclic hosts Pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev 116:7937–8002.  https://doi.org/10.1021/acs.chemrev.5b00765CrossRefPubMedGoogle Scholar
  10. 10.
    Liu S, Zavalij PY, Isaacs L (2005) Cucurbit[10]uril. J Am Chem Soc 127:16798–16799.  https://doi.org/10.1021/ja056287nCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cao L, Šekutor M, Zavalij PY et al (2014) Cucurbit[7]uril×guest pair with an attomolar dissociation constant. Angew Chemie Int Ed 53:988–993.  https://doi.org/10.1002/anie.201309635CrossRefGoogle Scholar
  12. 12.
    Cao L, Hettiarachchi G, Briken V, Isaacs L (2013) Cucurbit[7]uril containers for targeted delivery of oxaliplatin to cancer cells. Angew Chem Int Ed 52:12033–12037.  https://doi.org/10.1002/anie.201305061CrossRefGoogle Scholar
  13. 13.
    Hennig A, Bakirci H, Nau WM (2007) Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat Methods 4:629–632.  https://doi.org/10.1038/nmeth1064CrossRefPubMedGoogle Scholar
  14. 14.
    Norouzy A, Azizi Z, Nau WM (2015) Indicator displacement assays inside live cells. Angew Chem Int Ed 54:792–795.  https://doi.org/10.1002/anie.201407808CrossRefGoogle Scholar
  15. 15.
    Li Z, Yang J, Yu G et al (2014) Water-soluble pillar[7]arene: synthesis, pH-controlled complexation with paraquat, and application in constructing supramolecular vesicles. Org Lett 16:2066–2069.  https://doi.org/10.1021/ol500686rCrossRefPubMedGoogle Scholar
  16. 16.
    Li B, Meng Z, Li Q et al (2017) A pH responsive complexation-based drug delivery system for oxaliplatin. Chem Sci 8:4458–4464.  https://doi.org/10.1039/c7sc01438dCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951.  https://doi.org/10.1038/nbt.3330CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rothenberg ML, Carbone DP, Johnson DH (2003) Improving the evaluation of new cancer treatments: challenges and opportunities. Nat Rev Cancer 3:303–309.  https://doi.org/10.1038/nrc1047CrossRefPubMedGoogle Scholar
  19. 19.
    Xu J, Wang J, Luft JC et al (2012) Rendering protein-based particles transiently insoluble for therapeutic applications. J Am Chem Soc 134:8774–8777.  https://doi.org/10.1021/ja302363rCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286.  https://doi.org/10.1038/nchembio.85CrossRefPubMedGoogle Scholar
  21. 21.
    He H, Chen S, Zhou J et al (2013) Biomaterials Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 34:5344–5358.  https://doi.org/10.1016/j.biomaterials.2013.03.068CrossRefPubMedGoogle Scholar
  22. 22.
    Namgung R, Mi Lee Y, Kim J et al (2014) Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat Commun 5:4702.  https://doi.org/10.1038/ncomms4702CrossRefGoogle Scholar
  23. 23.
    Zhang YM, Zhang NY, Xiao K et al (2018) Photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin. Angew Chem Int Ed 57:8649–8653.  https://doi.org/10.1002/anie.201804620CrossRefGoogle Scholar
  24. 24.
    Zhang D, Wei Y, Chen K et al (2015) Biocompatible Reactive Oxygen Species (ROS)-Responsive nanoparticles as superior drug delivery vehicles. Adv Healthc Mater 4:69–76.  https://doi.org/10.1002/adhm.201400299CrossRefPubMedGoogle Scholar
  25. 25.
    Davis ME, Zuckerman JE, Choi CHJ et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070.  https://doi.org/10.1038/nature08956CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gao J, Li J, Geng WC et al (2018) Biomarker displacement activation: a general host-guest strategy for targeted phototheranostics in vivo. J Am Chem Soc 140:4945–4953.  https://doi.org/10.1021/jacs.8b02331CrossRefPubMedGoogle Scholar
  27. 27.
    Hu C, Ma N, Li F et al (2018) Cucurbit[8]uril-based giant supramolecular Vesicles: highly stable, versatile carriers for photoresponsive and targeted drug delivery. ACS Appl Mater Interfaces 10:4603–4613.  https://doi.org/10.1021/acsami.8b00297CrossRefPubMedGoogle Scholar
  28. 28.
    Duan Q, Cao Y, Li Y et al (2013) PH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J Am Chem Soc 135:10542–10549.  https://doi.org/10.1021/ja405014rCrossRefPubMedGoogle Scholar
  29. 29.
    Cao Y, Hu XY, Li Y et al (2014) Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6]arene and SAINT complexation for controllable drug release. J Am Chem Soc 136:10762–10769.  https://doi.org/10.1021/ja505344tCrossRefPubMedGoogle Scholar
  30. 30.
    Jiang L, Huang X, Chen D et al (2017) Supramolecular vesicles coassembled from disulfide-linked benzimidazolium amphiphiles and carboxylate-substituted pillar[6]arenes that are responsive to five stimuli. Angew Chem Int Ed 56:2655–2659.  https://doi.org/10.1002/anie.201611973CrossRefGoogle Scholar
  31. 31.
    Zhang J, Coulston RJ, Jones ST et al (2012) One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335:690–693.  https://doi.org/10.1126/science.1215416CrossRefPubMedGoogle Scholar
  32. 32.
    Kim C, Agasti SS, Zhu Z et al (2010) Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat Chem 2:962–966.  https://doi.org/10.1038/nchem.858CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tonga GY, Jeong Y, Duncan B et al (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7:597–603.  https://doi.org/10.1038/nchem.2284CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Samanta SK, Moncelet D, Briken V, Isaacs L (2016) Metal-organic polyhedron capped with cucurbit[8]uril delivers doxorubicin to cancer cells. J Am Chem Soc 138:14488–14496.  https://doi.org/10.1021/jacs.6b09504CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Samanta SK, Quigley J, Vinciguerra B et al (2017) Cucurbit[7]uril enables multistimuli responsive release from the self-assembled hydrophobic phase of a metal organic polyhedron. J Am Chem Soc 139:9066–9074.  https://doi.org/10.1021/jacs.7b05154CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Angelos S, Yang Y, Khashab NM et al (2009) Dual-controlled nanoparticles exhibiting AND logic. J Am Chem Soc 131:11344–11346.  https://doi.org/10.1021/ja9042752CrossRefPubMedGoogle Scholar
  37. 37.
    Díez P, Sánchez A, Gamella M et al (2014) Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J Am Chem Soc 136:9116–9123.  https://doi.org/10.1021/ja503578bCrossRefPubMedGoogle Scholar
  38. 38.
    Lee JH, Chen KJ, Noh SH et al (2013) On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Ed 52:4384–4388.  https://doi.org/10.1002/anie.201207721CrossRefGoogle Scholar
  39. 39.
    Tamesue S, Takashima Y, Yamaguchi H et al (2010) Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed 49: 7461–7464.  https://doi.org/10.1002/anie.201003567CrossRefGoogle Scholar
  40. 40.
    Li C, Rowland MJ, Shao Y et al (2015) Responsive double network hydrogels of interpenetrating DNA and CB[8] host-guest supramolecular systems. Adv Mater 27:3298–3304.  https://doi.org/10.1002/adma.201501102CrossRefPubMedGoogle Scholar
  41. 41.
    Park KM, Yang JA, Jung H et al (2012) In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6: 2960–2968.  https://doi.org/10.1021/nn204123pCrossRefPubMedGoogle Scholar
  42. 42.
    Ikejiri S, Takashima Y, Osaki M et al (2018) Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J Am Chem Soc 140:17308.  https://doi.org/10.1021/jacs.8b11351CrossRefGoogle Scholar
  43. 43.
    Jung H, Park KM, Yang JA et al (2011) Theranostic systems assembled in situ on demand by host-guest chemistry. Biomaterials 32:7687–7694.  https://doi.org/10.1016/j.biomaterials.2011.06.060CrossRefPubMedGoogle Scholar
  44. 44.
    Chen WH, Luo GF, Qiu WX et al (2017) Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117:54–65.  https://doi.org/10.1016/j.biomaterials.2016.11.057CrossRefPubMedGoogle Scholar
  45. 45.
    Kang H, Gravier J, Bao K et al (2016) Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv Mater 28:8162–8168.  https://doi.org/10.1002/adma.201601101CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ni X, Chen S, Yang Y, Tao Z (2016) Facile Cucurbit[8]uril-based supramolecular approach to fabricate tunable luminescent materials in aqueous solution. J Am Chem Soc 138:6177–6183.  https://doi.org/10.1021/jacs.6b01223CrossRefPubMedGoogle Scholar
  47. 47.
    Shi B, Jie K, Zhou Y et al (2016) Nanoparticles with near-infrared emission enhanced by Pillararene-based molecular recognition in water. J Am Chem Soc 138:80–83.  https://doi.org/10.1021/jacs.5b11676CrossRefPubMedGoogle Scholar
  48. 48.
    Yu G, Yang J, Fu X et al (2018) A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host-guest complex as an ultrasound and photoacoustic signal nanoamplifier. Mater Horizons 5:429–435.  https://doi.org/10.1039/c8mh00128fCrossRefGoogle Scholar
  49. 49.
    Jiang S, Lan S, Mao D et al (2018) Pro-guest and acyclic cucurbit[n]uril conjugated polymers for the controlled release of anti-tumor drugs. Chem Commun 54:9486–9489.  https://doi.org/10.1039/c8cc05552aCrossRefGoogle Scholar
  50. 50.
    Mao D, Liang Y, Liu Y et al (2017) Acid-labile acyclic cucurbit[n]uril molecular containers for controlled release. Angew Chem Int Ed 56:12614–12618.  https://doi.org/10.1002/anie.201707164CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations