Advertisement

Distributed Brillouin Sensing: Frequency-Domain Techniques

  • Aleksander WosniokEmail author
Reference work entry

Abstract

The substantial progresses in fiber-optic communications in combination with the increasing economic and political interest in structural health monitoring have led to a commercial establishment of distributed Brillouin sensing. The sensor systems, mainly based on the time-domain techniques, have been successfully implemented in the areas such as pipeline leak detection, geohazard effects, and ground movement detection.

This chapter introduces a further advancement in the area of Brillouin sensing in the frequency domain. The so-called Brillouin optical frequency-domain analysis (BOFDA) offers crucial perspectives in terms of dynamic range and cost efficiency.

The main principle of the frequency-domain approach takes advantage of the reversibility between the time and frequency domain given by a Fourier transform in the analysis of linear systems. The hereby presented overview gives a summary of the benefits and challenges of frequency-domain measurements closely tied to the narrowband recording of the complex transfer function. This function relates the counterpropagating pump and probe laser light along the sensor fiber providing the pulse response of the measurement system by applying the inverse Fourier transform (IFT). The strain or temperature distribution can be then determined from the retrieved Brillouin frequency shift (BFS) profile along the fiber.

References

  1. X. Bao, J. Dhliwayo, N. Heron, D.J. Webb, D.A. Jackson, J. Lightwave Technol. 13(7), 1340–1348 (1995)CrossRefGoogle Scholar
  2. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1999)Google Scholar
  3. G.J. Foschini, C.D. Poole, J. Lightwave Technol. 9(11), 1439–1456 (1991)CrossRefGoogle Scholar
  4. D. Garus, K. Krebber, F. Schliep, T. Gogolla, Opt. Lett. 21(17), 1402–1404 (1996)CrossRefGoogle Scholar
  5. D. Garus, T. Gogolla, K. Krebber, F. Schliep, J. Lightwave Technol. 15(4), 654–662 (1997)CrossRefGoogle Scholar
  6. H. Ghafoori-Shiraz, T. Okoshi, J. Lightwave Technol. 4(3), 316–322 (1986)CrossRefGoogle Scholar
  7. T. Gogolla, Theoretische Untersuchung der Brillouin-Wechselwirkung in Lichtleitfasern zur kontinuierlich verteilten Temperatur-und Dehnungsmessung auf Basis der Frequenzbereichsanalyse (Shaker, Aachen, 2000)Google Scholar
  8. F.J. Harris, Proc. IEEE 66, 1 (1978)CrossRefGoogle Scholar
  9. K. Krebber, Ortsauflösende Lichtleitfaser-Sensorik für die Temperatur und Dehnung unter Nutzung der stimulierten Brillouin-Streuung basierend auf der Frequenzbereichsanalyse (RUB, Bochum, 2001)Google Scholar
  10. A. Minardo, R. Bernini, L. Zeni, Opt. Express 22, 14 (2014)Google Scholar
  11. A. Minardo, R. Bernini, R. Ruiz-Lombera, J. Mirapeix, J.M. Lopez-Higuera, L. Zeni, Opt. Express 24(26), 29994–30001 (2016)CrossRefGoogle Scholar
  12. M. Nikles, L. Thevenaz, P. Robert, J. Lightwave Technol. 15(10), 1842–1851 (1997)CrossRefGoogle Scholar
  13. N. Nöther, Distributed Fiber Sensors in River Embankments: Advancing and Implementing the Brillouin Optical Frequency Domain Analysis (BAM, Berlin, 2010)Google Scholar
  14. N. Nöther, A. Wosniok, K. Krebber, Proc. SPIE 6933, 69330T-1–69330T-9 (2008a)CrossRefGoogle Scholar
  15. N. Nöther, A. Wosniok, K. Krebber, Proc. SPIE 7003, 700303.1–700303.9 (2008b)Google Scholar
  16. S. Rashleigh, J. Lightwave Technol. 1(2), 312–331 (1983)CrossRefGoogle Scholar
  17. M.A. Soto, L. Thévenaz, Opt. Express 21(25), 31347–31366 (2013)CrossRefGoogle Scholar
  18. A. Wosniok, Untersuchungen zur Unterscheidung der Einflussgrößen Temperatur und Dehnung bei Anwendung der verteilten Brillouin-Sensorik in der Bauwerksüberwachung (TUB, Berlin, 2013)Google Scholar
  19. A. Wosniok, N. Nöther, K. Krebber, Procedia Chem. 1(1), 397–400 (2009)CrossRefGoogle Scholar
  20. A. Yaniay, J.-M. Delavaux, J. Toulouse, J. Lightwave Technol. 20(8), 1425–1432 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.8.6 Fibre Optic SensorsFederal Institute for Materials Research and Testing (BAM)BerlinGermany

Section editors and affiliations

  • Yosuke Mizuno
    • 1
  1. 1.Institute of Innovative ResearchTokyo Institute of TechnologyTokyoJapan

Personalised recommendations