3D Silica Lithography for Future Optical Fiber Fabrication

  • Gang-Ding PengEmail author
  • Yanhua Luo
  • Jianzhong Zhang
  • Jianxiang Wen
  • Yushi Chu
  • Kevin Cook
  • John Canning
Reference work entry


Conventional silica fiber fabrication using chemical vapor deposition (CVD) has been a successful optical fiber fabrication platform, producing the bulk of commercial optical fibers and fiber amplifiers that form the backbone of today’s Internet. As the Internet evolves into a so-called ubiquitous “Internet of things,” or IoT, the role of optical fibers is expanding from a mainly passive telecommunications transmission medium to host for fiber sensing, fiber devices and lasers, and beyond. This is creating a demand for increasingly sophisticated optical fibers. Unfortunately, conventional silica fiber fabrication has limited capability in both material and structure flexibility for diverse and custom-designed functionalities. This chapter discusses the research and development of 3D silica lithography using digital light processing and related technologies for future fabrication of specialty silica optical fibers with greater freedom in both structure and material formation. Showing enormous prospects and identifying challenges and pathways based on recent reported progress in 3D printing glass, the new era of additive manufacturing, or 3D printing, technologies offer great potential to produce key disruptive silica fiber technology for diverse and sophisticated needs in future fiber communication and sensing systems. The first printed optical preforms are reported here.


Optical Fiber fabrication Additive fiber manufacturing 3D fiber printing 3D silica lithography Specialty optical fiber Silica optical fiber Structured optical fibers Doped optical fibers 


  1. A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, R. Buczynski, Fused silica optical fibers with graded index nanostructured core. Sci. Rep. 8, 12329 (2018)CrossRefGoogle Scholar
  2. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A.P.T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.D. Peng, G. Li, T. Wang, Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20, 2668–2680 (2012)CrossRefGoogle Scholar
  3. H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review. Int. J. Adv. Manuf. Technol. 83(1–4), 389–405 (2016)CrossRefGoogle Scholar
  4. S.M. Bittner, J.L. Guo, A. Melchiorri, A.G. Mikos, Three-dimensional printing of multilayered tissue engineering scaffolds. Mater. Today 21, 861–874 (2018)CrossRefGoogle Scholar
  5. J. Canning, E. Buckley, K. Lyytikainen, All-fiber phase-aperture zone plate fresnel lenses. Electron. Lett. 39(3), 311–312 (2003)CrossRefGoogle Scholar
  6. J. Canning, M.A. Hossain, C. Han, L. Chartier, K. Cook, T. Athanaze, Drawing optical fibers from 3D printers. Opt. Lett. 41(23), 5551–5554 (2016)CrossRefGoogle Scholar
  7. Y. Chen, N. Zhao, J. Liu, Y. Xiao, M. Zhu, K. Liu, G. Zhou, Z. Hou, C. Xia, Y. Zheng, Z. Chen, Yb3+−doped large-mode-area photonic crystal fiber for fiber lasers prepared by laser sintering technology. Opt. Mater. Express 9, 1356–1364 (2019)CrossRefGoogle Scholar
  8. K. Cook, J. Canning, S. Leon-Saval, Z. Reid, M.A. Hossain, J.-E. Comatti, Y. Luo, G.D. Peng, Air-structured optical fiber drawn from a 3D-printed preform. Opt. Lett. 40, 3966–3969 (2015)CrossRefGoogle Scholar
  9. K. Cook, G. Balle, J. Canning, L. Chartier, T. Athanaze, M.A. Hossain, C. Han, J.-E. Comatti, Y. Luo, G.D. Peng, Step-index optical fiber drawn from 3D printed preforms. Opt. Lett. 41, 4554–4557 (2016)CrossRefGoogle Scholar
  10. I. Cooperstein, E. Shukrun, O. Press, A. Kamyshny, S. Magdassi, Additive manufacturing of transparent silica glass from solutions. ACS Appl. Mater. Interfaces 10, 18879–18885 (2018)CrossRefGoogle Scholar
  11. J.F. Destino, N.A. Dudukovic, M.A. Johnson, D.T. Nguyen, T.D. Yee, G.C. Egan, A.M. Sawvel, W.A. Steele, T.F. Baumann, E.B. Duoss, T. Suratwala, R. Dylla-Spears, 3D printed optical quality silica and silica–titania glasses from sol–gel feedstocks. Adv. Mater. Technol. 3, 1700323 (2018)CrossRefGoogle Scholar
  12. S.V. Firstov, S.V. Alyshev, K.E. Riumkin, A.M. Khegai, A.V. Kharakhordin, M.A. Melkumov, E.M. Dianov, Laser-active fibers doped with bismuth for a wavelength region of 1.6–1.8 μm. IEEE J. Select. Topics Quantum Electron. 24, 0902415 (2018)CrossRefGoogle Scholar
  13. P. Flanagan, K. Cook, J. Canning, 3D Printed Photonic Ribs: A New Platform for Devices, Sensors and More. Asia Pacific Optical Sensors (APOS2018), Matsue City, Shimane, Japan, 2018Google Scholar
  14. S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, P. Wang, Hollow-core conjoined-tube negative-curvature fiber with ultralow loss. Nat. Commun. 9, 2828 (2018)CrossRefGoogle Scholar
  15. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554 (2016)CrossRefGoogle Scholar
  16. L. Glavind, S. Buggy, J. Canning, S. Gao, K. Cook, Y. Luo, G.D. Peng, B.F. Skipper, M. Kristensen, Long-period gratings for selective monitoring of loads on a wind turbine blade. Appl. Opt. 53, 3993–4001 (2014)CrossRefGoogle Scholar
  17. C. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G.D. Peng, Y.J. Rao, Distributed fiber optofluidic laser for chip-scale arrayed biochemical sensing. Lab Chip 18, 2741–2748 (2018)CrossRefGoogle Scholar
  18. J. Han, E. Liu, J. Liu, Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. J. Opt. Soc. Am. A 36, 533–539 (2019a)CrossRefGoogle Scholar
  19. M. Han, H. Wang, Y. Yang, C. Liang, W. Bai, Z. Yan, H. Li, Y. Xue, X. Wang, B. Akar, H. Zhao, H. Luan, J. Lim, I. Kandela, G.A. Ameer, Y. Zhang, Y. Huang, J.A. Rogers, Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019b)CrossRefGoogle Scholar
  20. A.J. Ikushima, T. Fujiwara, K. Saito, Silica glass: a material for photonics. J. Appl. Phys. 88, 1201–1213 (2000)CrossRefGoogle Scholar
  21. C. Inamura, M. Stern, D. Lizardo, P. Houk, N. Oxman, Additive manufacturing of transparent glass structures. 3D Print. Addit. Manuf. 5, 269–283 (2018)CrossRefGoogle Scholar
  22. J.J. Kaufman, C. Bow, F.A. Tan, A.M. Cole, A.F. Abouraddy, 3D printing preforms for fiber drawing and structured functional particle production, in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), (Optical Society of America, Sydney, 2016), p. AW4C.1CrossRefGoogle Scholar
  23. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRefGoogle Scholar
  24. F. Kotz, K. Plewa, W. Bauer, N. Schneider, N. Keller, T. Nargang, D. Helmer, K. Sachsenheimer, M. Schäfer, M. Worgull, C. Greiner, Liquid glass: A facile soft replication method for structuring glass. Adv. Mater. 28(23), 4646–4650 (2016)CrossRefGoogle Scholar
  25. F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B.E. Rapp, Three-dimensional printing of transparent fused silica glass. Nature 544, 337 (2017)CrossRefGoogle Scholar
  26. F. Kotz, N. Schneider, A. Striegel, A. Wolfschläger, N. Keller, M. Worgull, W. Bauer, D. Schild, M. Milich, C. Greiner, D. Helmer, Glassomer – processing fused silica glass like a polymer. Adv. Mater. 30(22), 1707100 (2018)CrossRefGoogle Scholar
  27. Y. Luo, J. Wen, J. Zhang, J. Canning, G.D. Peng, Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands. Opt. Lett. 37, 3447–3449 (2012)CrossRefGoogle Scholar
  28. Y. Luo, Y. Chu, K. Cook, G. Tafti, S. Wang, W. Wang, Y. Tian, J. Canning, G.D. Peng, Spun high birefringence bismuth/erbium co-doped photonic crystal fiber with broadband polarized emission. Invited presentation, Asia Com. & Phot. Conf. ACP Hangzhou, China, 2018Google Scholar
  29. T. Ma, H. Guerboukha, M. Girard, A.D. Squires, R.A. Lewis, M. Skorobogatiy, 3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors. Adv. Opt. Mater. 4, 2085–2094 (2016)CrossRefGoogle Scholar
  30. T.H.R. Marques, B.M. Lima, J.H. Osório, L.E.d. Silva, C.M.B. Cordeiro, 3D Printed Microstructured Optical Fibers, in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2017Google Scholar
  31. C. Martelli, J. Canning, Fresnel fibers with omni-directional zone cross-sections. Opt. Express 15(7), 4281–4286 (2007)CrossRefGoogle Scholar
  32. A. Michie, J. Canning, I. Bassett, J. Haywood, K. Digweed, M. Åslund, B. Ashton, M. Stevenson, J. Digweed, A. Lau, D. Scandurra, Spun elliptically birefringent photonic crystal fiber. Opt. Express 15, 1811–1816 (2007)CrossRefGoogle Scholar
  33. S.Z. Muhamad Yassin, N.Y.M. Omar, H.A. Abdul-Rashid, Optimized fabrication of thulium doped silica optical fiber using MCVD, in Handbook of Optical Fibers, ed. by G. D. Peng, (Springer Singapore, Singapore, 2019). Scholar
  34. D.T. Nguyen, C. Meyers, T.D. Yee, N.A. Dudukovic, J.F. Destino, C. Zhu, E.B. Duoss, T.F. Baumann, T. Suratwala, J.E. Smay, R. Dylla-Spears, 3D-printed transparent glass. Adv. Mater. 29, 1701181 (2017)CrossRefGoogle Scholar
  35. G.D. Peng, Research and development of new generation optical fibers, in International Workshop on Photonic Fibers and Applications, Shanghai, China, 2018Google Scholar
  36. P.S.J. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)CrossRefGoogle Scholar
  37. J.A. Sánchez-Martín, J.M. Álvarez, M.A. Rebolledo, S. Torres-Peiró, A. Díez, M.V. Andrés, Erbium-doped photonic crystal fibers: fabrication and characterization. AIP Conf. Proc. 1055, 99–102 (2008)CrossRefGoogle Scholar
  38. Z.M. Sathi, J. Zhang, Y. Luo, J. Canning, G.D. Peng, Improving broadband emission within Bi/Er doped silicate fibers with Yb co-doping. Opt. Mater. Express 5, 2096–2105 (2015)CrossRefGoogle Scholar
  39. M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J.T. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin, Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349 (2012)CrossRefGoogle Scholar
  40. W. Talataisong, R. Ismaeel, T.H.R. Marques, S. Abokhamis Mousavi, M. Beresna, M.A. Gouveia, S.R. Sandoghchi, T. Lee, C.M.B. Cordeiro, G. Brambilla, Mid-IR hollow-core microstructured fiber drawn from a 3D printed PETG preform. Sci. Rep. 8, 8113 (2018a)CrossRefGoogle Scholar
  41. W. Talataisong, R. Ismaeel, S.R. Sandoghchi, T. Rutirawut, G. Topley, M. Beresna, G. Brambilla, Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer. Opt. Express 26, 32007–32013 (2018b)CrossRefGoogle Scholar
  42. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, A.M. Herkommer, 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci. Adv. 3, e1602655 (2017)CrossRefGoogle Scholar
  43. P.M. Toal, L.J. Holmes, R.X. Rodriguez, E.D. Wetzel, Microstructured monofilament via thermal drawing of additively manufactured preforms. Addit. Manuf. 16, 12–23 (2017)CrossRefGoogle Scholar
  44. S. Unger, F. Lindner, C. Aichele, K. Schuster, Rare-earth-doped laser fiber fabrication using vapor deposition technique, in Handbook of Optical Fibers, ed. by G. D. Peng, (Springer Singapore, Singapore, 2019). Scholar
  45. L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, D. Chen, Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W. Sci. Rep. 5, 8490 (2015)CrossRefGoogle Scholar
  46. J. Wen, J. Wang, Y. Dong, N. Chen, Y. Luo, G.D. Peng, F. Pang, Z. Chen, T. Wang, Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method. Appl. Surf. Sci. 349, 287–291 (2015)CrossRefGoogle Scholar
  47. X. Zhang, X. Zhang, Q. Wang, J. Chang, G.D. Peng, In-phase supermode selection in ring-type and concentric-type multicore fibers using large-mode-area single-mode fiber. J. Opt. Soc. Am. A 28, 924–933 (2011)CrossRefGoogle Scholar
  48. Q. Zhao, F. Tian, X. Yang, S. Li, J. Zhang, X. Zhu, J. Yang, Z. Liu, Y. Zhang, T. Yuan, L. Yuan, Optical fibers with special shaped cores drawn from 3D printed preforms. Optik 133, 60–65 (2015)CrossRefGoogle Scholar
  49. C. Zhu, Z. Qi, V.A. Beck, M. Luneau, J. Lattimer, W. Chen, M.A. Worsley, J. Ye, E.B. Duoss, C.M. Spadaccini, C.M. Friend, J. Biener, Toward digitally controlled catalyst architectures: hierarchical nanoporous gold via 3D printing. Sci. Adv. 4, eaas9459 (2018)CrossRefGoogle Scholar
  50. M.G. Zubel, A. Fasano, G. Woyessa, K. Sugden, H.K. Rasmussen, O. Bang, 3D-printed PMMA preform for hollow-core POF drawing, in Proceedings of the 25th International Conference on Plastic Optical Fibers, 2016, p. 6Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gang-Ding Peng
    • 1
    Email author
  • Yanhua Luo
    • 1
    • 6
  • Jianzhong Zhang
    • 5
  • Jianxiang Wen
    • 3
  • Yushi Chu
    • 7
    • 2
    • 4
  • Kevin Cook
    • 4
  • John Canning
    • 4
  1. 1.Photonics and Optical Communications, School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia
  2. 2.Key Laboratory of In-Fiber Integrated Optics, Ministry Education of ChinaHarbin Engineering UniversityHarbinChina
  3. 3.Key Laboratory of Specialty fiber Optics and Optical Access NetworksShanghai UniversityShanghaiChina
  4. 4.interdisciplinary Photonics Laboratories (iPL), Global Big Data Technologies Centre (GBDTC), Tech Lab, School of Electrical and Data EngineeringUniversity of Technology SydneySydneyAustralia
  5. 5.Key Lab of In-fiber Integrated Optics, Ministry of EducationHarbin Engineering UniversityHarbinChina
  6. 6.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceShenzhen UniversityShenzhenChina
  7. 7.Photonics and Optical Communications, School of Electrical Engineering and TelecommunicationsUNSWSydneyAustralia

Section editors and affiliations

  • H. A. Abdul-Rashid
    • 1
  1. 1.Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia

Personalised recommendations