Microfiber: Physics and Fabrication

  • Horng Sheng Lin
  • Zulfadzli YusoffEmail author
Reference work entry


In this chapter, several essential concepts for the understanding of microfiber are provided. The effective refractive indices of core mode and cladding modes corresponding to various diameters are comprehensively explained based on wave equation. Subsequently, the effective refractive indices are related to the adiabaticity criterion of microfiber based on the upper boundary of taper angle. Following that, an overview of microfiber fabrication techniques is reviewed. Eventually, the most recent deployment of microfiber sensor for structural health monitoring application is demonstrated.


  1. C. Alegria, R. Feced, M. Zervas, R. Laming, Acousto-optic effect in optical fibre tapered structures for the design of filters, in IEE Colloquium on New Developments in Optical Amplifiers (Ref. No. 1998/492), IET (1998), pp. 11–1Google Scholar
  2. T. Allsop, R. Reeves, D.J. Webb, I. Bennion, R. Neal, A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer. Rev. Sci. Instrum. 73(4), 1702–1705 (2002)CrossRefGoogle Scholar
  3. C. Baker, M. Rochette, A generalized heat-brush approach for precise control of the waist profile in fiber tapers. Opt. Mater. Express 1(6), 1065–1076 (2011)CrossRefGoogle Scholar
  4. F. Bilodeau, K. Hill, D. Johnson, S. Faucher, Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff. Opt. Lett. 12(8), 634–636 (1987)CrossRefGoogle Scholar
  5. T. Birks, Y. Li, The shape of fiber tapers. J. Lightwave Technol. 10(4), 432–438 (1992)CrossRefGoogle Scholar
  6. R. Black, S. Lacroix, F. Gonthier, J. Love, Tapered single-mode fibres and devices. II. Experimental and theoretical quantification, in Optoelectronics, IEE Proceedings J, vol. 138 (IET, 1991), pp. 355–364Google Scholar
  7. L. Bobb, P. Shankar, H. Krumboltz, Bending effects in biconically tapered single-mode fibers. J. Lightwave Technol. 8(7), 1084–1090 (1990)CrossRefGoogle Scholar
  8. G. Brambilla, F. Koizumi, X. Feng, D. Richardson, Compound-glass optical nanowires. Electron. Lett. 41(7), 400–402 (2005)CrossRefGoogle Scholar
  9. G. Brambilla, F. Xu, X. Feng, Fabrication of optical fibre nanowires and their optical and mechanical characterisation. Electron. Lett. 42(9), 517–519 (2006)CrossRefGoogle Scholar
  10. W. Burns, M. Abebe, C. Villarruel, Parabolic model for shape of fiber taper. Appl. Opt. 24(17), 2753–2755 (1985)CrossRefGoogle Scholar
  11. W. Burns, M. Abebe, C. Villarruel, R. Moeller, Loss mechanisms in single-mode fiber tapers. J. Lightwave Technol. 4(6), 608–613 (1986)CrossRefGoogle Scholar
  12. X. Chen, Y. Yu, X. Xu, Q. Huang, Z. Ou, J. Wang, P. Yan, C. Du, Temperature insensitive bending sensor based on in-line Mach-Zehnder interferometer. Photon. Sensors. 4(3), 193–197 (2013)CrossRefGoogle Scholar
  13. H. Choi, M. Kim, B. Lee, All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 15(9), 5711–5720 (2007)CrossRefGoogle Scholar
  14. S. Dass, R. Jha, Micron wire assisted inline Mach-Zehnder interferometric curvature sensor. Photon. Technol. Lett. IEEE 99, 1 (2015)Google Scholar
  15. T. Dimmick, G. Kakarantzas, T. Birks, P. Russell, Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl. Opt. 38(33), 6845–6848 (1999)CrossRefGoogle Scholar
  16. B. Dong, J. Hao, Z. Xu, Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer. Opt. Fiber Technol. 17(3), 233–235 (2011)CrossRefGoogle Scholar
  17. T. Erdogan, Cladding-mode resonances in short-and long-period fiber grating filters. JOSA A 14(8), 1760–1773 (1997)CrossRefGoogle Scholar
  18. A. Felipe, G. Espíndola, H. Kalinowski, J. Lima, A. Paterno, Stepwise fabrication of arbitrary fiber optic tapers. Opt. Express 20(18), 19893–19904 (2012)CrossRefGoogle Scholar
  19. O. Frazão, S. Silva, J. Viegas, J.M. Baptista, J.L. Santos, J. Kobelke, K. Schuster, All fiber Mach–Zehnder interferometer based on suspended twin-core fiber. IEEE Photon. Technol. Lett. 17(22), 1300–1302 (2010)CrossRefGoogle Scholar
  20. S. Gao, W. Zhang, Z. Bai, H. Zhang, Ultrasensitive refractive index sensor based on microfiber-assisted U-shape cavity. Photon. Technol. Lett. IEEE 25(18), 1815–1818 (2013)CrossRefGoogle Scholar
  21. Y. Gong, T. Zhao, Y.-J. Rao, Y. Wu, All-fiber curvature sensor based on multimode interference. Photon. Technol. Lett. IEEE 23(11), 679–681 (2011)CrossRefGoogle Scholar
  22. J.C. Graf, S.A. Teston, P.V. de Barba, J. Dallmann, J.A. Lima, H.J. Kalinowski, A.S. Paterno, Fiber taper rig using a simplified heat source and the flame-brush technique, in Microwave and Optoelectronics Conference (IMOC), 2009 SBMO/IEEE MTT-S International (IEEE, 2009), pp. 621–624Google Scholar
  23. T. Guo, L. Shao, H.-Y. Tam, P.A. Krug, J. Albert, Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling. Opt. Express 17(23), 20651–20660 (2009)CrossRefGoogle Scholar
  24. K. Imoto, S. Aoki, M. Sumi, Novel method of diameter control in optical-fibre drawing process. Electron. Lett. 13(24), 726–727 (1977)CrossRefGoogle Scholar
  25. K. Imoto, M. Sumi, G. Toda, T. Suganuma, Optical fiber drawing method with gas flow controlling system. J. Lightwave Technol. 7(1), 115–121 (1989)CrossRefGoogle Scholar
  26. A.A. Jasim, M. Dernaika, S.W. Harun, H. Ahmad, A switchable figure eight Erbium-Doped fiber laser based on inter-modal beating by means of non-adiabatic microfiber. J. Lightwave Technol. 33(2), 528–534 (2015)CrossRefGoogle Scholar
  27. L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 36(19), 3753–3755 (2011)CrossRefGoogle Scholar
  28. G. Kakarantzas, T. Dimmick, T. Birks, R. Le Roux, P. Russell, Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers. Opt. Lett. 26(15), 1137–1139 (2001)CrossRefGoogle Scholar
  29. K. Kao, G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, in Proceedings of the Institution of Electrical Engineers, vol. 113 (IET, 1966), pp. 1151–1158Google Scholar
  30. S. Lacroix, F. Gonthier, J. Bures, All-fiber wavelength filter from successive biconical tapers. Opt. Lett. 11(10), 671–673 (1986)CrossRefGoogle Scholar
  31. S. Lacroix, F. Gonthier, R. Black, J. Bures, Tapered-fiber interferometric wavelength response: the achromatic fringe. Opt. Lett. 13(5), 395–397 (1988)CrossRefGoogle Scholar
  32. H. Lin, Y. Raji, J. Lim, S. Lim, M. Mokhtar, Z. Yusoff, Packaged in-line Mach–Zehnder interferometer for highly sensitive curvature and flexural strain sensing. Sens. Actuators A Phys. 250, 237–242 (2016)CrossRefGoogle Scholar
  33. Y. Liu, L. Wei, Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Appl. Opt. 46(13), 2516–2519 (2007)CrossRefGoogle Scholar
  34. J. Love, Spot size, adiabaticity and diffraction in tapered fibres. Electron. Lett. 23(19), 993–994 (1987)CrossRefGoogle Scholar
  35. J. Love, W. Henry, Quantifying loss minimisation in single-mode fibre tapers. Electron. Lett. 22(17), 912–914 (1986)CrossRefGoogle Scholar
  36. J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, Tapered single-mode fibres and devices. I. Adiabaticity criteria, in Optoelectronics, IEE Proceedings J, vol. 138 (IET, 1991), pp. 343–354Google Scholar
  37. P. Lu, Q. Chen, Asymmetrical fiber Mach–Zehnder interferometer for simultaneous measurement of axial strain and temperature. Photon. J. IEEE 2(6), 942–953 (2010)CrossRefGoogle Scholar
  38. L. Ma, Y. Qi, Z. Kang, S. Jian, All-fiber strain and curvature sensor based on no-core fiber. IEEE Sens. J. 14(5), 1514–1517 (2014)CrossRefGoogle Scholar
  39. E. Mägi, L. Fu, H. Nguyen, M. Lamont, D. Yeom, B. Eggleton, Enhanced Kerr nonlinearity in sub-wavelength diameter As2 Se3 chalcogenide fiber tapers. Opt. Express 15(16), 10324–10329 (2007)CrossRefGoogle Scholar
  40. L. Men, P. Lu, Q. Chen, Femtosecond laser trimmed fiber taper for simultaneous measurement of axial strain and temperature. Photon. Technol. Lett. IEEE 23(5), 320–322 (2011)CrossRefGoogle Scholar
  41. D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, G. Salceda-Delgado, Compact optical fiber curvature sensor based on concatenating two tapers. Opt. Lett. 36(22), 4380–4382 (2011)CrossRefGoogle Scholar
  42. K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, S. Jin, Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer. Opt. Commun. 285(24), 5148–5150 (2012)CrossRefGoogle Scholar
  43. Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, H. Wei, Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing. Opt. Express 21(20), 23812–23821 (2013)CrossRefGoogle Scholar
  44. U. Paek, High-speed high-strength fiber drawing. J. Lightwave Technol. 4(8), 1048–1060 (1986)CrossRefGoogle Scholar
  45. C.R. Petersen, R.D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, O. Bang, Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt. Express 25(13), 15336–15348 (2017)CrossRefGoogle Scholar
  46. W. Png, H. Lin, C. Pua, J. Lim, S. Lim, Y. Lee, F. Rahman, Feasibility use of in-line Mach-Zehnder interferometer optical fibre sensor in lightweight foamed concrete structural beam on curvature sensing and crack monitoring. Struct. Health Monit. 17, 1277–1288 (2018)CrossRefGoogle Scholar
  47. S. Pricking, H. Giessen, Tapering fibers with complex shape. Opt. Express 18(4), 3426–3437 (2010)CrossRefGoogle Scholar
  48. Y. Raji, H. Lin, S. Ibrahim, M. Mokhtar, Z. Yusoff, Intensity-modulated abrupt tapered fiber Mach-Zehnder interferometer for the simultaneous sensing of temperature and curvature. Opt. Laser Technol. 86, 8–13 (2016)CrossRefGoogle Scholar
  49. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, H. Gong, Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method. Opt. Express 20(14), 15406–15417 (2012)CrossRefGoogle Scholar
  50. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, Y. Xia, Fabrication of submicron-diameter silica fibers using electric strip heater. Opt. Express 14(12), 5055–5060 (2006)CrossRefGoogle Scholar
  51. J. Shi, S. Xiao, M. Bi, L. Yi, P. Yang, Discrimination between strain and temperature by cascading single-mode thin-core diameter fibers. Appl. Opt. 51(14), 2733–2738 (2012)CrossRefGoogle Scholar
  52. H. Song, H. Gong, K. Ni, X. Dong, All fiber curvature sensor based on modal interferometer with waist enlarge splicing. Sens. Actuators A Phys. 203, 103–106 (2013)CrossRefGoogle Scholar
  53. M. Sumetsky, Y. Dulashko, A. Hale, Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Opt. Express 12(15), 3521–3531 (2004)CrossRefGoogle Scholar
  54. B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang et al. Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement. Opt. Express 23(11), 14596–14602 (2015)CrossRefGoogle Scholar
  55. Y. Takeuchi, J. Noda, Novel fiber coupler tapering process using a microheater. IEEE Photon. Technol. Lett. 4(5), 465–467 (1992)CrossRefGoogle Scholar
  56. R. Threlfall, On Laboratory Arts (Macmillan and Company, London/New York, 1898)Google Scholar
  57. Z. Tian, S. Yam, J. Barnes, W. Bock, P. Greig, J. Fraser, H. Loock, R. Oleschuk, Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers. Photon. Technol. Lett. IEEE 20(8), 626–628 (2008a)CrossRefGoogle Scholar
  58. Z. Tian, S.-H. Yam, H. Loock, Single-mode fiber refractive index sensor based on core-offset attenuators. Photon. Technol. Lett. IEEE 20(16), 1387–1389 (2008b)CrossRefGoogle Scholar
  59. L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426(6968), 816–819 (2003)CrossRefGoogle Scholar
  60. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, Photonic nanowires directly drawn from bulk glasses. Opt. Express 14(1), 82–87 (2006)CrossRefGoogle Scholar
  61. S.M. Tripathi, A. Kumar, R.K. Varshney, Y. Kumar, E. Marin, J.-P. Meunier, Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures. J. Lightwave Technol. 27(13), 2348–2356 (2009)CrossRefGoogle Scholar
  62. C.Y. Tsao, D.N. Payne, W.A. Gambling, Modal characteristics of three-layered optical fiber waveguides: a modified approach. JOSA A 6(4), 555–563 (1989)CrossRefGoogle Scholar
  63. N. Vukovic, N. Broderick, M. Petrovich, G. Brambilla, Novel method for the fabrication of long optical fiber tapers. Photon. Technol. Lett. IEEE 20(14), 1264–1266 (2008)CrossRefGoogle Scholar
  64. B. Wang, E. Mies, Review of fabrication techniques for fused fiber components for fiber lasers, in Proceedings of SPIE, vol. 7159, 71950A (2009)Google Scholar
  65. R. Wang, J. Zhang, Y. Weng, Q. Rong, Y. Ma, Z. Feng, M. Hu, X. Qiao, Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer. IEEE Sens. J. 13(5), 1766–1770 (2013)CrossRefGoogle Scholar
  66. J. Ward, D. OShea, B. Shortt, M. Morrissey, K. Deasy, S. Nic Chormaic, Heat-and-pull rig for fiber taper fabrication. Rev. Sci. Instrum. 77(8), 083105–083105 (2006)CrossRefGoogle Scholar
  67. D. Wu, T. Zhu, K.S. Chiang, M. Deng, All single-mode fiber Mach–Zehnder interferometer based on two peanut-shape structures. J. Lightwave Technol. 30(5), 805–810 (2012)CrossRefGoogle Scholar
  68. X. Xing, Y. Wang, B. Li, Nanofibers drawing and nanodevices assembly in poly (trimethylene terephthalate). Opt. Express 16(14), 10815–10822 (2008)CrossRefGoogle Scholar
  69. Y. Zhou, W. Zhou, C.C. Chan, W.C. Wong, L.-Y. Shao, J. Cheng, X. Dong, Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating. Opt. Commun. 284(24), 5669–5672 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Universiti Tunku Abdul Rahman, Sungai Long CampusKajangMalaysia
  2. 2.Multimedia University, Persiaran MultimediaCyberjayaMalaysia

Personalised recommendations