Advertisement

Distributed Brillouin Sensing: Time-Domain Techniques

  • Marcelo A. SotoEmail author
Reference work entry

Abstract

Distributed optical fiber sensors based on spontaneous and stimulated Brillouin scattering have been a subject of intense research and industrial developments for almost 30 years. Combining interrogation methods based on optical time-domain reflectometry and the dependence of Brillouin scattering on environmental variables, such as temperature and strain, high-performance distributed sensing techniques have been developed over the last decades for a wide range of industrial applications. This chapter presents a comprehensive description of the fundamentals of time-domain techniques exploited for distributed Brillouin optical fiber sensing. This includes the basic principles and limitations of different classical configurations. Theoretical descriptions of sophisticated techniques to overcome the fundamental limitations of classical Brillouin time-domain schemes are also presented. In this way, the most-common advanced approaches to reach high spatial resolution, dynamic, and long-range distributed Brillouin sensing are thoroughly described from theoretical and practical points of view. The material presented in this chapter is intended to serve as a guideline to design and implement state-of-the-art distributed Brillouin optical fiber sensors exploiting time-domain interrogation approaches.

References

  1. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic, San Diego, 2007)Google Scholar
  2. M.N. Alahbabi, Y.T. Cho, T.P. Newson, P.C. Wait, A.H. Hartog, Influence of modulation instability on distributed optical fiber sensors based on spontaneous Brillouin scattering. J. Opt. Soc. Am. B 21(6), 1156–1160 (2004)CrossRefGoogle Scholar
  3. M. Alem, M.A. Soto, L. Thévenaz, Analytical model and experimental verification of the critical power for modulation instability in optical fibers. Opt. Express 23(23), 29514–29532 (2015)CrossRefGoogle Scholar
  4. M. Alem, M. A. Soto, M. Tur, L. Thévenaz, Analytical expression and experimental validation of the Brillouin gain spectral broadening at any sensing spatial resolution, in Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors, 103239J (2017)Google Scholar
  5. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, M. Gonzalez-Herraez, Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km. Opt. Express 20, 12147–12154 (2012)CrossRefGoogle Scholar
  6. X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, M. Gonzalez-Herraez, Relative intensity noise transfer reduction in Raman-assisted BOTDA systems. IEEE Photon. Technol. Lett. 26(3), 271–274 (2014)CrossRefGoogle Scholar
  7. K.-I. Aoyama, K. Nakagawa, T. Itoh, Optical time domain reflectometry in a single-mode fiber. IEEE J. Quantum Electron. QE-17(6), 862–868 (1981)CrossRefGoogle Scholar
  8. R. Bernini, A. Minardo, L. Zeni, Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett. 34, 2613–2615 (2009)CrossRefGoogle Scholar
  9. J.-C. Beugnot, M. Tur, S.F. Mafang, L. Thévenaz, Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing. Opt. Express 19(8), 7381–7397 (2011)CrossRefGoogle Scholar
  10. R.W. Boyd, Nonlinear Optical, 2nd edn. (Academic, San Diego, 2003)Google Scholar
  11. P. Chaube, B.G. Colpitts, D. Jagannathan, A.W. Brown, Distributed fiber-optic sensor for dynamic strain measurement. IEEE Sensors J. 8(7), 1067–1072 (2008)CrossRefGoogle Scholar
  12. Y.T. Cho, M. Alahbabi, M.J. Gunning, T.P. Newson, 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification. Opt. Lett. 28, 1651–1653 (2003)CrossRefGoogle Scholar
  13. H.Z. Cummins, R.W. Gammon, Rayleigh and Brillouin scattering in liquids: the Landau—Placzek ratio. J. Chem. Phys. 44(7), 2785–2796 (1966)CrossRefGoogle Scholar
  14. A. Dominguez-Lopez, A. Lopez-Gil, S. Martín-López, M. Gonzalez-Herraez, Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection. IEEE Phot. Technol. Lett. 26(18), 1817–1820 (2014)CrossRefGoogle Scholar
  15. A. Dominguez-Lopez, Z. Yang, M.A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, M. Gonzalez-Herraez, Novel scanning method for distortion-free BOTDA measurements. Opt. Express 24(10), 10188 (2016)CrossRefGoogle Scholar
  16. Y. Dong, L. Chen, X. Bao, Time-division multiplexing-based BOTDA over 100km sensing length. Opt. Lett. 36, 277–279 (2011)CrossRefGoogle Scholar
  17. Y. Dong, L. Chen, X. Bao, Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs. J. Lightwave Tech. 30(8), 1161–1167 (2012)CrossRefGoogle Scholar
  18. M. Farahani, M. Wylie, E. Castillo-Guerra, B. Colpitts, Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques. J. Lightwave Technol. 30, 1134–1142 (2012)CrossRefGoogle Scholar
  19. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution, in OSA Technical Digest Series vol. 16, 12th International Conference on Optical Fiber Sensors. (1997), p. 324–327Google Scholar
  20. A. Fellay, L. Thévenaz, M. Facchini, P. Robert, Limitation of Brillouin time-domain analysis by Raman scattering, in Proceeding of the 5th Optical Fibre Measurement Conference. (1999), p. 110–113Google Scholar
  21. S. M. Foaleng, L. Thévenaz, Impact of Raman scattering and modulation instability on the performances of Brillouin sensors, in Proc. SPIE 7753, 21st International Conference on Optical Fiber Sensors, 77539V (2011)Google Scholar
  22. S.M. Foaleng, M. Tur, J.-C. Beugnot, L. Thévenaz, High spatial and spectral resolution long-range sensing using Brillouin echoes. J. Lightwave Technol. 28(20), 2993–3003 (2010)CrossRefGoogle Scholar
  23. S.M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, M. González-Herráez, L. Thévenaz, Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors. Opt. Lett. 36, 97–99 (2011)CrossRefGoogle Scholar
  24. E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, H. Bartelt, The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors. Meas. Sci. Technol. 10(2), 112–116 (1999)CrossRefGoogle Scholar
  25. F. Gyger, E. Rochat, S. Chin, M. Niklès, L. Thévenaz, Extending the sensing range of Brillouin optical time-domain analysis up to 325 km combining four optical repeaters, in Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576Q (2014)Google Scholar
  26. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol. 13(7), 1296–1302 (1995)CrossRefGoogle Scholar
  27. H. Iribas, A. Loayssa, F. Sauser, M. Llera, S. Le Floch, Cyclic coding for Brillouin optical time-domain analyzers using probe dithering. Opt. Express 25, 8787–8800 (2017)CrossRefGoogle Scholar
  28. C. Jin, L. Wang, Y. Chen, N. Guo, W. Chung, H. Au, Z. Li, H.-Y. Tam, C. Lu, Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer. Opt. Express 25, 9213–9224 (2017)CrossRefGoogle Scholar
  29. M.D. Jones, Using simplex codes to improve OTDR sensitivity. IEEE Phot. Technol. Lett. 5(7), 822–824 (1993)CrossRefGoogle Scholar
  30. S. Le Floch, F. Sauser, M. A. Soto, L. Thévenaz, Time/frequency coding for Brillouin distributed sensors, in Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 84211J (2012)Google Scholar
  31. W. Li, X. Bao, Y. Li, L. Chen, Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Express 16(26), 21616–21625 (2008)CrossRefGoogle Scholar
  32. S. G. Mallat, A Wavelet Tour of Signal Processing. (Academic, 1999)Google Scholar
  33. S. Martin-López, M. Alcon-Camas, F. Rodríguez-Barrios, P. Corredera, J.D. Ania-Castanón, L. Thévenaz, M. González-Herráez, Brillouin optical time-domain analysis assisted by second-order Raman amplification. Opt. Express 18(18), 18769–18778 (2010)CrossRefGoogle Scholar
  34. S.M. Maughen, H.H. Kee, T.P. Newson, Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 12(7), 834–842 (2001)CrossRefGoogle Scholar
  35. M. Nazarathy, S.A. Newton, R.P. Giffard, D.S. Moberly, F. Sischka, W.R. Trutna, S. Foster, Real-time long range complementary correlation optical time domain reflectometer. J. Lightwave Technol. 7(1), 24–38 (1989)CrossRefGoogle Scholar
  36. M. Niklès, L. Thévenaz, P.A. Robert, Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Technol. 15(10), 1842–1851 (1997)CrossRefGoogle Scholar
  37. Y. Peled, A. Motil, L. Yaron, M. Tur, Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile. Opt. Express 19, 19845–19854 (2011)CrossRefGoogle Scholar
  38. Y. Peled, A. Motil, M. Tur, Fast Brillouin optical time domain analysis for dynamic sensing. Opt. Express 20, 8584–8591 (2012)CrossRefGoogle Scholar
  39. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J.D. Ania-Castanón, L. Thévenaz, M. González-Herráez, Distributed Brillouin fiber sensor assisted by first-order Raman amplification. J. Lightwave Technol. 28(15), 2162–2172 (2010)CrossRefGoogle Scholar
  40. S. Le Floch, F. Sauser, M. Llera, M. A. Soto, L. Thévenaz, Colour simplex coding for brillouin distributed sensors, in Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 879437 (2013)Google Scholar
  41. K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber. Opt. Lett. 18(3), 185–187 (1993)CrossRefGoogle Scholar
  42. M.A. Soto, L. Thévenaz, Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express 21(25), 31347–31366 (2013a)CrossRefGoogle Scholar
  43. M.A. Soto, S. Le Floch, L. Thévenaz, Bipolar optical pulse coding for performance enhancement in BOTDA sensors. Opt. Express 21(14), 16390–16397 (2013b)CrossRefGoogle Scholar
  44. M. A. Soto, L. Thévenaz, Towards 1’000’000 resolved points in a distributed optical fibre sensor, in Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157C3 (2014)Google Scholar
  45. M.A. Soto, P.K. Sahu, G. Bolognini, F. Di Pasquale, Brillouin-based distributed temperature sensor employing pulse coding. IEEE Sensors J. 8(3), 225–226 (2008)CrossRefGoogle Scholar
  46. M.A. Soto, G. Bolognini, F. Di Pasquale, L. Thévenaz, Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range. Opt. Lett. 35(2), 259–261 (2010a)CrossRefGoogle Scholar
  47. M.A. Soto, G. Bolognini, F. Di Pasquale, Analysis of pulse modulation format in coded BOTDA sensors. Opt. Express 18(14), 14878–14892 (2010b)CrossRefGoogle Scholar
  48. M.A. Soto, G. Bolognini, F. Di Pasquale, Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Opt. Express 19(5), 4444–4457 (2011)CrossRefGoogle Scholar
  49. M.A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J.D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, L. Thevenaz, Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers. J. Lightwave Technol. 32(1), 152–162 (2014a)CrossRefGoogle Scholar
  50. M.A. Soto, A.L. Ricchiuti, L. Zhang, D. Barrera, S. Sales, L. Thévenaz, Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers. Opt. Express 22, 28584–28595 (2014b)CrossRefGoogle Scholar
  51. M.A. Soto, J.A. Ramírez, L. Thévenaz, Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun. 7, 10870 (2016)CrossRefGoogle Scholar
  52. M. A. Soto, J. A. Ramírez, L. Thévenaz, Image and video denoising for distributed optical fibre sensors, in Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors, 103230K (2017)Google Scholar
  53. K.D. Souza, Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering. Meas. Sci. Technol. 17(5), 1065–1069 (2006)CrossRefGoogle Scholar
  54. K.D. Souza, T.P. Newson, Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification. Meas. Sci. Technol. 12(7), 952–957 (2001)Google Scholar
  55. L. Thévenaz, S.F. Mafang, J. Lin, Effect of pulse depletion in a Brillouin optical time-domain analysis system. Opt. Express 21(12), 14017–14035 (2013)CrossRefGoogle Scholar
  56. J. Urricelqui, A. Zornoza, M. Sagues, A. Loayssa, Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation. Opt. Express 20(24), 26942–26949 (2012)CrossRefGoogle Scholar
  57. J. Urricelqui, M. Sagues, A. Loayssa, Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses. Opt. Express 23, 30448–30458 (2015)CrossRefGoogle Scholar
  58. A. Voskoboinik, O.F. Yilmaz, A.W. Willner, M. Tur, Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Opt. Express 19, B842–B847 (2011)CrossRefGoogle Scholar
  59. P.C. Wait, T.P. Newson, Landau Placzek ratio applied to distributed fibre sensing. Opt. Commun. 122, 141–146 (1996a)CrossRefGoogle Scholar
  60. P.C. Wait, T.P. Newson, Reduction of coherent noise in the Landau Placzek ratio method for distributed fibre optic temperature sensing. Opt. Commun. 131, 285–289 (1996b)CrossRefGoogle Scholar
  61. P.C. Wait, K.D. Souza, T.P. Newson, A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors. Opt. Commun. 144, 17–23 (1997)CrossRefGoogle Scholar
  62. Z. Yang, M.A. Soto, L. Thévenaz, Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors. Opt. Express 24, 586–597 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringEPFL Swiss Federal Institute of TechnologyLausanneSwitzerland

Section editors and affiliations

  • Yosuke Mizuno
    • 1
  1. 1.Institute of Innovative ResearchTokyo Institute of TechnologyTokyoJapan

Personalised recommendations