Multimode Fibers for Data Centers

  • Xin ChenEmail author
  • Scott R. Bickham
  • John S. Abbott
  • J. Doug Coleman
  • Ming-Jun Li
Reference work entry


Data centers (DCs) have evolved rapidly to deliver higher data rates, higher density, and longer distances while staying as economical as possible. Multimode fiber (MMF) operated at 850 nm is the leading optical medium now used in DCs for distances up to 100–150 m, enabling utilization of vertical-cavity surface-emitting lasers (VCSELs) to provide low-cost optical connectivity compared to single-mode fiber solutions. However recent trends in DC drive the MMF-based systems toward several new fronts, including wavelength division multiplexing involving longer wavelengths (BiDi and SWDM), extended reach through engineered links, and variations in the core dimensions or operating wavelength of the MMF. In this chapter, the role of MMFs in DCs will be reviewed, beginning with a discussion of the fundamental aspects of light propagation, modal bandwidth and other fiber characteristics, and link models. Various approaches to address transmission limitations due to chromatic and modal dispersion are then summarized. One such approach is to operate the MMF at longer wavelengths to take advantage of the lower chromatic dispersion. The concept of a “universal” fiber that bridges the gap between the multimode and single-mode transmission is then introduced. Recent trends in DC are also reviewed, and one clear conclusion is that the role of MMF in DC is still evolving to meet the increased needs for scalability, density, data rate, and economic requirements.


  1. J. S. Abbott, S. Bickham, P. Dainese, M-J Li, Fibers for short-distance applications, in Optical Fiber Telecommunications VIA, ed. by I. Kaminow, T. Li, A. Wilner (Elsevier, New York, 2013), p. 243CrossRefGoogle Scholar
  2. S. Bickham et al. Design and characterization of bend-insensitive multimode fiber, in Proceedings of IWCS 2011, (2011), pp. 154–159Google Scholar
  3. S. Bickham et al., High bandwidth multimode fiber for the 1300 nm window, in Paper 7–7, Proceedings of IWCS 2014 (2014)Google Scholar
  4. X. Chen, M.-J. Li, J.E. Hurley, K.A. Hoover, D.R. Powers, R.S. Vodhanel, Chromatic dispersion compensated 25Gb/s multimode VCSEL transmission around 850nm with a MMF jumper, in OFC/NFOEC Technical Digest OW1B (2013)Google Scholar
  5. X. Chen et al. 25 Gb/s transmission over 820m of MMF using a multimode launch from an integrated silicon photonics transceiver. Opt. Express 22(2), 2070–2077 (2014)CrossRefGoogle Scholar
  6. X. Chen et al. Long wavelength multimode fiber transmissions for high speed data center applications, in Proceedings of OECC (2015)Google Scholar
  7. X. Chen, J.E. Hurley, S. Bickham, J. Abbott, B. Chow, D. Coleman, M.-J. Li, Evaluation of extended reach capability of 40G BiDi VCSEL-based WDM transmission over OM4 multimode fibers, in Proceedings of SPIE 9772, Broadband Access Communication Technologies X, 977206 (2016a)Google Scholar
  8. X. Chen, J.E. Hurley, J. Stone, J.D. Downie, I. Roudas, D. Coleman, M. Li, Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th4E.4 (2016b)Google Scholar
  9. X. Chen, J. Abbott, D. Powers, D. Coleman, M-J. Li, Statistical treatment of IEEE spreadsheet model for VCSEL-multimode fiber transmissions, in OECC/PS2016 July 2016 Niigata, Japan Paper TuD4-3 (2016c)Google Scholar
  10. X. Chen, J.E. Hurley, J.S. Stone, A.R. Zakharian, D. Coleman, M.-J. Li, Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers. Opt. Express 24, 18492–18500 (2016d)CrossRefGoogle Scholar
  11. X. Chen, J.E. Hurley, D. Gui, Y. Li, J.S. Stone, M.-J. Li, Demonstration of SWDM transmission over OM4 multimode fiber with modal dispersion compensation, in Optical Fiber Communication Conference, OSA Technical Digest (Online) (Optical Society of America, 2017), Paper Tu2B.3 (2017)Google Scholar
  12. D.G. Cunningham, W.G. Lane, Gigabit Ethernet Networking (Macmillan Technical Publishing, New York, 1999)Google Scholar
  13. G. DiGiovanni, S. Das, L. Blyler, W. White, R. Boncek, S.G. Golowich, Chapter 2: design of optical fibers for communications systems. In: I. Kaminow, T. Li (eds.) Optical Fiber Telecommunications IVB, Academic Press, (New York, 2002)CrossRefGoogle Scholar
  14. W. Freude, Vielmodenfasern, in Optische Kommuniikationstechnik: Handbuch fur Wissenschaft und Industrie, ed. by E. Voges K. Petermann (Springer, Berlin, 2002)CrossRefGoogle Scholar
  15. A. Gholami, D. Molin, P. Sillard, Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL- based gigabit Ethernet transmissions. Photonics Technol. Lett. 21, 645–647 (2009)CrossRefGoogle Scholar
  16. D. Hanson, D. Cunningham, P. Dawe, D. Dolfi, 10Gb/s link budget spreadsheet (version 3.1.16a) Excel® spreadsheet on IEEE website.
  17. W. Hurley, T. Cooke, Bend-insensitive multimode fibers enable advanced cable performance, in Paper 13-4, Proceedings of IWCS (2009)Google Scholar
  18. T. Kise et al. Development of 1060 nm 25-Gb/s VCSEL and demonstration of 300 m and 500 m system reach using MMFs and link optimized for 1060 nm, OFC 2014, paper Th4G (2014)Google Scholar
  19. D.M. Kuchta, A.V. Rylyakov, C.L. Schow, J.E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, J. Tatum, A 55Gb/s directly modulated 850 nm VCSEL-based optical link, in IEEE Photonics Conference 2012 (IPC 2012). Post Deadline Paper PD 1.5 (2012)Google Scholar
  20. D. Molin, M. Bigot-Astruc, P. Sillard, Chromatic dispersion compensated multimode fibers for data communications. ECOC 2011, paper Tu.3.C.3 (2011)Google Scholar
  21. P. Nouchi, P. Sillard, D. Molin, Optical fibers, in Fibre Optic Communication-Key Devices, ed. by H. Venghaus N. Grote (Springer, Berlin, 2012)Google Scholar
  22. M.C. Nowell, D.G. Cunningham, D.C. Hanson, L.G. Kazovsky, Evaluation of Gb/s laser based fibre LAN links: Review of the gigabit Ethernet model. Opt. Quant. Electron. 32, 169 (2000)CrossRefGoogle Scholar
  23. P. Pepeljugoski, M.J. Hackert, J.S. Abbott, S.E. Swanson, S.E. Golowich, A.J. Ritger, P. Kolesar, Y.C. Chen, P. Pleunis, Development of system specification for laser-optimized 50μm multimode Fiber for multigigabit short-wavelength LANS. J. Lightwave Technol. 21, 1256 (2003a)CrossRefGoogle Scholar
  24. P. Pepeljugoski, S.E. Golowich, A.J. Ritger, P. Kolesar, A. Ristekski, Modeling and simulation of next-generation multimode Fiber links. J. Lightwave Technol. 21, 1242 (2003b)CrossRefGoogle Scholar
  25. J. Petrilla, Example MMF link model “ExampleMMF LinkModel 130503.xlsx” (2013).
  26. R. Pimpinella, J. Castro, B. Kose, B. Lane, Dispersion compensated multimode fiber, in Proceedings of the 60th IWCS Conference (2011), p. 410Google Scholar
  27. E. Simpanen et al. 1060 nm single and multimode VCSELs for up to 50 Gb/s modulation, to be published in Proceedings of 2017 IEEE Photonics Conference (2017)Google Scholar
  28. N. Suzuki et al. 25 Gbit/s operation of InGaAs-based VCSELs. Electron. Lett. 42, 975 (2006)CrossRefGoogle Scholar
  29. T. Suzuki et al. Reliability study of 1060nm 25Gbps VCSEL in terms of high speed modulation, in Proceedings of SPIE 8276, 827604-1-8 (2012)Google Scholar
  30. M. Tan et al. Universal photonic interconnect for data centers, in Proceedings of OFC 2017, Paper Tu2B.4 (2017)Google Scholar
  31. J.A. Tatum, D. Gazula, L.A. Graham, J.K. Guenter, R.H. Johnson, J. King, C. Kocot, G.D. Landry, I.E.E.E. Senior Member, I. Lyubomirsky, A.N. MacInnes, E.M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, F. Tang, VCSEL-based interconnects for current and future data centers. J. Lightwave Technol. 33, 727 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xin Chen
    • 1
    Email author
  • Scott R. Bickham
    • 1
  • John S. Abbott
    • 1
  • J. Doug Coleman
    • 1
  • Ming-Jun Li
    • 1
  1. 1.Corning IncorporatedCorningUSA

Section editors and affiliations

  • Ming-Jun Li
    • 1
  1. 1.Corning IncorporatedCorningUSA

Personalised recommendations