Optical Fiber Microfluidic Sensors Based on Opto-physical Effects

  • Chen-Lin Zhang
  • Chao-Yang Gong
  • Yuan GongEmail author
  • Yun-Jiang Rao
  • Gang-Ding Peng
Reference work entry


Microfluidics has been extensively investigated for biological and chemical applications such as biomolecule detection, drug screening, chemical synthesis, and analysis. The fusion of microfluidics and photonics has given birth to an exciting new area, optofluidics. Optofluidics could further broaden the application and extend the functionality of microfluidics. When a laser irradiates into a microfluid, opto-physical effects may happen due to the strong interaction between light and liquid. Such opto-physical effects have great potential for optofluidic applications. In this chapter, the optical fiber optofluidic (OF2) sensors based on the opto-physical effects, including laser-induced force (optical force), and photothermal effects are introduced. One unique advantage of these sensors is the fabrication process that is very simple and cost-effective. Based on the opto-physical effects, a cleaved optical fiber is good enough to perform high-performance sensing, which is much simpler than microstructured optical fibers or micro-fabricated structures. The optical forces and photothermal effects in microfluidics are not only crucial for sensing applications but also promising for sorting cells or particles and for developing optofluidic devices.


  1. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)CrossRefGoogle Scholar
  2. A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992)CrossRefGoogle Scholar
  3. A. Ashkin, J.M. Dziedzic, J. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)CrossRefGoogle Scholar
  4. A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, R. Corradini, Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens. Bioelectron. 63, 248–254 (2015)CrossRefGoogle Scholar
  5. D.S. Bykov, O.A. Schmidt, T.G. Euser, P.S.J. Russell, Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9, 461 (2015)CrossRefGoogle Scholar
  6. Y.-H. Chuang, K.-G. Sun, C.-J. Wang, J. Huang, C.-L. Pan, A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes. Rev. Sci. Instrum. 69, 437–439 (1998)CrossRefGoogle Scholar
  7. A.M. Cubillas, S. Unterkofler, T.G. Euser, B.J. Etzold, A.C. Jones, P.J. Sadler, P. Wasserscheid, P.S.J. Russell, Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42, 8629–8648 (2013)CrossRefGoogle Scholar
  8. S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, J. Popp, Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11, 1484 (2011)CrossRefGoogle Scholar
  9. P. Domachuk, B. Eggleton, Fiber-based optofluidics. Proc. SPIE 6588, 65880C (2007)CrossRefGoogle Scholar
  10. X. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011)CrossRefGoogle Scholar
  11. Y. Gong, A.-Y. Ye, Y. Wu, Y.-J. Rao, Y. Yao, S. Xiao, Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment. Opt. Express 21, 16181–16190 (2013)CrossRefGoogle Scholar
  12. Y. Gong, W. Huang, Q.-F. Liu, Y. Wu, Y. Rao, G.-D. Peng, J. Lang, K. Zhang, Graded-index optical fiber tweezers with long manipulation length. Opt. Express 22, 25267–25276 (2014)CrossRefGoogle Scholar
  13. Y. Gong, C. Zhang, Q.-F. Liu, Y. Wu, H. Wu, Y. Rao, G.-D. Peng, Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity. Opt. Express 23, 3762–3769 (2015a)CrossRefGoogle Scholar
  14. Y. Gong, Q.-F. Liu, C.-L. Zhang, Y. Wu, Y.-J. Rao, G.-D. Peng, Microfluidic flow rate detection with a large dynamic range by optical manipulation. IEEE Photon. Technol. Lett. 27, 2508–2511 (2015b)CrossRefGoogle Scholar
  15. Y. Gong, L. Qiu, C. Zhang, Y. Wu, Y.-J. Rao, G.-D. Peng, Dual-mode fiber optofluidic flowmeter with a large dynamic range. J. Lightwave Technol. 35, 2156–2160 (2017)CrossRefGoogle Scholar
  16. J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, J. Käs, Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451 (2000)CrossRefGoogle Scholar
  17. J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Käs, The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001)CrossRefGoogle Scholar
  18. Y. Harada, T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124, 529–541 (1996)CrossRefGoogle Scholar
  19. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, H. Du, Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor. Biosens. Bioelectron. 26, 4774–4778 (2011)CrossRefGoogle Scholar
  20. S. Hepplestone, A. Ciavarella, C. Janke, G. Srivastava, Size and temperature dependence of the specific heat capacity of carbon nanotubes. Surf. Sci. 600, 3633–3636 (2006)CrossRefGoogle Scholar
  21. P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, K. Dholakia, Dual beam fibre trap for Raman microspectroscopy of single cells. Opt. Express 14, 5779–5791 (2006)CrossRefGoogle Scholar
  22. G. Kostovski, P.R. Stoddart, A. Mitchell, The optical fiber tip: an inherently light-coupled microscopic platform for micro-and nanotechnologies. Adv. Mater. 26, 3798–3820 (2014)CrossRefGoogle Scholar
  23. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photonics 1, 723–727 (2007)CrossRefGoogle Scholar
  24. Y. Liu, M. Yu, Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing. Opt. Express 17, 13624–13638 (2009)CrossRefGoogle Scholar
  25. Z. Liu, C. Guo, J. Yang, L. Yuan, Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt. Express 14, 12510–12516 (2006)CrossRefGoogle Scholar
  26. X. Liu, T. Gong, Y. Liu, Z. Wang, A novel refractometric sensor based on optofluidic integration of composite core photonic crystal fibers. J. Opt. 19, 015301 (2016)CrossRefGoogle Scholar
  27. S.K. Mohanty, K.S. Mohanty, M.W. Berns, Manipulation of mammalian cells using a single-fiber optical microbeam. J. Biomed. Opt. 13, 054049 (2008)CrossRefGoogle Scholar
  28. D. Psaltis, S.R. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381 (2006)CrossRefGoogle Scholar
  29. K. Taguchi, K. Atsuta, T. Nakata, R. Ikeda, Levitation of a microscopic object using plural optical fibers. Opt. Commun. 176, 43–47 (2000)CrossRefGoogle Scholar
  30. A. Tam, C. Patel, Optical absorptions of light and heavy water by laser optoacoustic spectroscopy. Appl. Opt. 18, 3348–3358 (1979)CrossRefGoogle Scholar
  31. M. Terazima, N. Hirota, S.E. Braslavsky, A. Mandelis, S.E. Bialkowski, G.J. Diebold, R. Miller, D. Fournier, R.A. Palmer, A. Tam, Quantities, terminology, and symbols in photothermal and related spectroscopies (IUPAC recommendations 2004). Pure Appl. Chem. 76, 1083–1118 (2004)CrossRefGoogle Scholar
  32. J. Tian, Y. Lu, Q. Zhang, M. Han, Microfluidic refractive index sensor based on an all-silica in-line Fabry–Perot interferometer fabricated with microstructured fibers. Opt. Express 21, 6633–6639 (2013)CrossRefGoogle Scholar
  33. J. Tian, Z. Lu, M. Quan, Y. Jiao, Y. Yao, Fast response Fabry–Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber. Opt. Express 24, 20132–20142 (2016)CrossRefGoogle Scholar
  34. S. Unterkofler, M.K. Garbos, T.G. Euser, P.S.J. Russell, Long-distance laser propulsion and deformation-monitoring of cells in optofluidic photonic crystal fiber. J. Biophotonics 6, 743–752 (2013)CrossRefGoogle Scholar
  35. D.K. Wu, B.T. Kuhlmey, B.J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009)CrossRefGoogle Scholar
  36. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, H.-Y. Tam, Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11, 1389–1395 (2011)CrossRefGoogle Scholar
  37. Y. Zhang, P. Liang, Z. Liu, J. Lei, J. Yang, L. Yuan, A novel temperature sensor based on optical trapping technology. J. Lightwave Technol. 32, 1394–1398 (2014)CrossRefGoogle Scholar
  38. C.-L. Zhang, Y. Gong, Q.-F. Liu, Y. Wu, Y.-J. Rao, G.-D. Peng, Graded-index fiber enabled strain-controllable optofluidic manipulation. IEEE Photon. Technol. Lett. 28, 256–259 (2016)CrossRefGoogle Scholar
  39. C.-L. Zhang, Y. Gong, W.-L. Zou, Y. Wu, Y.-J. Rao, G.-D. Peng, X. Fan, Microbubble-based fiber optofluidic interferometer for sensing. J. Lightwave Technol. 35, 2514–2519 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chen-Lin Zhang
    • 1
  • Chao-Yang Gong
    • 1
  • Yuan Gong
    • 1
    Email author
  • Yun-Jiang Rao
    • 1
  • Gang-Ding Peng
    • 2
  1. 1.Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China)University of Electronic Science and Technology of ChinaChengduChina
  2. 2.Photonics and Optical Communications, School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia

Section editors and affiliations

  • Yuan Gong
    • 1
  1. 1.University of Electronic Science and Technology of China (UESTC)ChengduChina

Personalised recommendations