Distributed Raman Sensing

  • Marcelo A. SotoEmail author
  • Fabrizio Di Pasquale
Reference work entry


The Raman scattering effect constitutes one of the basic physical mechanisms exploited in optical fiber distributed temperature sensing. In particular Raman distributed temperature sensors (RDTS) have been developed for more than three decades, becoming today a mature technology that is widely applied to several strategic industrial fields. Making use of the thermally-activated spontaneous Raman scattering (SpRS) process, continuous measurements of a temperature profile over a sensing range of tens of kilometers can be obtained with high accuracy and meter-scale spatial resolution. Knowing the distributed temperature profile over large infrastructures provides a powerful technique for applications ranging from oil and gas to fire detection, and from energy production to transportation applications and environmental monitoring. Although this technology can be considered to be quite mature, research on Raman distributed temperature sensing is still active, with the main goal being extending the sensing distance while keeping high spatial resolution and a low cost of the system, and providing reliable and robust RDTS units able to operate in harsh environments.

In this book chapter, after a first description of the physical mechanisms behind Raman scattering, the working principle of RDTS system is provided along with a description of the most-common system configurations. Then, advanced techniques to improve the RDTS performance (e.g., pulse coding and image processing) are presented. In the final section, some examples of RDTS industrial applications are addressed, presenting several field trials which demonstrate the effectiveness of RDTS as practical monitoring solutions in a wide range of industrial fields.


  1. G.P. Agrawal, Fiber-Optic Communication Systems, 4th edn. (Wiley, New York, 2010)Google Scholar
  2. M.K. Barnoski, M.D. Rourke, S.M. Jensen, R.T. Melville, Optical time domain reflectometer. Appl. Opt. 16(9), 2375–2379 (1977)CrossRefGoogle Scholar
  3. F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M.A. Soto, G. Bolognini, F. Di Pasquale, SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic simplex codes. Electron. Lett. 46(17), 1221–1223 (2010)CrossRefGoogle Scholar
  4. G. Bolognini, J. Park, M.A. Soto, N. Park, F. Di Pasquale, Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification. Meas. Sci. Technol. 18(10), 3211–3218 (2007.) Special Issue: Optical Fibre SensorsCrossRefGoogle Scholar
  5. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic, San Diego, 2003)Google Scholar
  6. A. Buades, B. Coll, J.M. Morel, A review of image denoising methods, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)CrossRefGoogle Scholar
  7. B. Culshaw, A. Kersey, Fiber-optic sensing: a historical perspective. J. Lightwave Technol. 26(9), 1064–1078 (2008)CrossRefGoogle Scholar
  8. J.P. Dakin, A.D. Kersey, Distributed optic fiber sensors. Proc. SPIE 1797, 76 (1993)CrossRefGoogle Scholar
  9. J.P. Dakin, D.J. Pratt, Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 21(13), 569–570 (1985)CrossRefGoogle Scholar
  10. W. Eickhoff, R. Ulrich, Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 39, 693 (1981)CrossRefGoogle Scholar
  11. M.A. Farahani, T. Gogolla, Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. J. Lightwave Technol. 17(8), 1379–1391 (1999)CrossRefGoogle Scholar
  12. A.F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A.H. Hartog, P. Hughes, K. Williams, A.P. Leach, Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures. IEEE Trans. Nucl. Sci. 52(6), 2689–2691 (2005)CrossRefGoogle Scholar
  13. M.J.E. Golay, Complementary series. IRE Trans. Inf. Theory 7(2), 82–87 (1961)CrossRefGoogle Scholar
  14. A.H. Hartog, A.P. Leach, Distributed temperature sensing in solid-core fibres. Electron. Lett. 21(23), 1061–1062 (1985)CrossRefGoogle Scholar
  15. M. Harwit, N.J.A. Sloane, Hadamard Transform Optics (Academic, New York, 1979)Google Scholar
  16. P. Healey, Complementary code sets for OTDR. Electron. Lett. 25(11), 692–693 (1989)CrossRefGoogle Scholar
  17. T. Horiguchi, M. Tateda, BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory. J. Lightwave Technol. 7(8), 1170–1176 (1989)CrossRefGoogle Scholar
  18. D. Hwang, D.-J. Yoon, I.-B. Kwon, D.-C. Seo, Y. Chung, Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected antistokes Raman scattering. Opt. Express 18(10), 9747–9754 (2010)CrossRefGoogle Scholar
  19. N.M. Islam, Raman Amplifiers for Telecommunications 1: Physical Principles (Springer, New York, 2004)CrossRefGoogle Scholar
  20. M. Jaaskelainen, Temperature monitoring of geothermal energy wells. Proc. SPIE 7653, 765303 (2010)CrossRefGoogle Scholar
  21. M.D. Jones, Using simplex codes to improve OTDR sensitivity. IEEE Photon. Technol. Lett. 5(7), 822–824 (1993)CrossRefGoogle Scholar
  22. K. Kikuchi, T. Naito, T. Okoshi, Measurement of Raman scattering in single-mode optical fiber by time-domain reflectometry. IEEE J. Quantum Electron. 24(10), 1973–1975 (1988)CrossRefGoogle Scholar
  23. K. Kikuci, T. Naito, T. Okoshi, Measurement of Raman scattering in single-mode optical fiber by time-domain-reflectometry. IEEE J. Quantum Electron. 24(10), 1973–1975 (1988)CrossRefGoogle Scholar
  24. A. Kimura, E. Takada, K. Fujita, M. Nakazawa, H. Takahashi, S. Ichige, Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques. Meas. Sci. Technol. 12(7), 966–973 (2001)Google Scholar
  25. D. Lee, H. Yoon, N.Y. Kim, H. Lee, N. Park, Analysis and experimental demonstration of simplex coding technique for SNR enhancement of OTDR, in Proceedings of IEEE LTIMC 2004 (2004)Google Scholar
  26. S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. Pattern Anal. Mach. Intell. IEEE Trans. on 11(7), 674–693 (1989)CrossRefGoogle Scholar
  27. S. Namiki, Y. Emori, Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J. Sel. Top. Quantum Electron. 7(1), 3–16 (2001)CrossRefGoogle Scholar
  28. M. Nazarathy, S.A. Newton, R.P. Giffard, D.S. Moberly, F. Sischka, W.R. Trutna, S. Foster, Real-time long-range complementary correlation optical time-domain reflectometer. J. Lightwave Technol. 7(1), 24–38 (1989)CrossRefGoogle Scholar
  29. M. Nazarathy, S.A. Newton, W.R. Trutna, Complementary correlation OTDR with three codewords. Electron. Lett. 26(1), 70–71 (1990)CrossRefGoogle Scholar
  30. J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, N. Park, Raman-based distributed temperature sensor with simplex coding and link optimisation. IEEE Photon. Technol. Lett. 18, 1879–1881 (2006)CrossRefGoogle Scholar
  31. A. Rogers, Distributed optical fiber sensing. Meas. Sci. Technol. 1(8), 75–99 (1999)CrossRefGoogle Scholar
  32. M.K. Saxena et al., Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals. Opt. Laser Technol. 65, 14–24 (2015)CrossRefGoogle Scholar
  33. A. Signorini, T. Nannipieri, L. Gabella, F. Di Pasquale, G. Latini, D. Ripari, Raman distributed temperature sensor for oil leakage detection in soil: a field trial and future trends, 23rd International Conference on Optical Fiber Sensors 2014 (Santander, Spain, 2014)Google Scholar
  34. A. Signorini, T. Nannipieri, F. Di Pasquale, E. Fedeli, E. Marzilli, Fire detection in long railway tunnels using high performance Raman based optical fiber sensors, 11th WCRR (World Congress on Railway Research) (Milan, 29th May, 2nd June 2016)Google Scholar
  35. H.Y. Song, S.W. Golomb, Some new constructions for simplex codes. IEEE Trans. Inf. Theory 40(2), 504–507 (1994)CrossRefGoogle Scholar
  36. M.A. Soto, P.K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, C. Rueck, Distributed temperature sensor system based on Raman scattering using correlation-codes, IEE Electron. Lett. 43(16), 862–864 (2007)CrossRefGoogle Scholar
  37. M.A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, F. Di Pasquale, Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Opt. Lett. 36(13), 2557–2559 (2011a)CrossRefGoogle Scholar
  38. M.A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, F. Di Pasquale, Advanced cyclic coding technique for long-range Raman DTS systems with meter-scale spatial resolution over standard SMF, in IEEE Sensors Conference 2011 (Limerick, Ireland, 2011b), paper 1767Google Scholar
  39. M.A. Soto, A. Signorini, T. Nannipieri, S. Faralli, G. Bolognini, F. Di Pasquale, Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-stokes signal only. J. Lightwave Technol. 30(8), 1215–1222 (2012)CrossRefGoogle Scholar
  40. M.A. Soto, J.A. Ramírez, L. Thévenaz, Intensifying Brillouin distributed fibre sensors using image processing, in Proceedings of SPIE 9634, 24th International Conference on Optical Fibre Sensors (2015), 96342DGoogle Scholar
  41. M.A. Soto, J.A. Ramírez, L. Thévenaz, Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun. 7, 10870 (2016a)CrossRefGoogle Scholar
  42. M.A. Soto, J.A. Ramírez, L. Thévenaz, Reaching millikelvin resolution in Raman distributed temperature sensing using image processing, in Proceedings of SPIE 9916, 6th European Workshop on Optical Fibre Sensors (2016b), 99162AGoogle Scholar
  43. K. Suh, C. Lee, Auto-correction method for differential attenuation in a fiber-optic distributed-temperature sensor. Opt. Lett. 33(16), 1845–1847 (2008)CrossRefGoogle Scholar
  44. I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, F. Di Pasquale, Raman distributed temperature measurement at CERN high energy AcceleRator mixed field facility (CHARM). IEEE Phot. Technol. Lett. 27(20), 2182–2185 (2015a)CrossRefGoogle Scholar
  45. I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, F. Di Pasquale, Raman distributed temperature measurement at CERN high energy AcceleRator mixed field facility (CHARM). IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015b)CrossRefGoogle Scholar
  46. I. Toccafondo, Y.E. Marin, E. Guillermain, J. Kuhnhenn, J. Mekki, M. Brugger, F. Di Pasquale, Distributed optical fiber radiation sensing in a mixed-field radiation environment at CERN, to be published in J. Lightwave Technol. 35(16), 3303–3310 (2017)CrossRefGoogle Scholar
  47. W.M. Tolles, J.W. Nibler, J.R. McDonald, A.B. Harvey, A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Appl. Spectrosc. 31(4), 253–271 (1977)CrossRefGoogle Scholar
  48. P.C. Wait, K.D. Souza, T.P. Newson, A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors. Opt. Commun. 144, 17–23 (1997)CrossRefGoogle Scholar
  49. S. Yin, P.B. Ruffin, F.T.S. Yu, Fiber Optic Sensors, 2nd edn., ed. by CRC Press (Taylor and Francis Group, Boca Raton, FL, 2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringEPFL Swiss Federal Institute of TechnologyLausanneSwitzerland
  2. 2.Institute of Communication, Information and Perception Technologies (TECIP)Scuola Superiore Sant’AnnaPisaItaly

Section editors and affiliations

  • Yosuke Mizuno
    • 1
  1. 1.Institute of Innovative ResearchTokyo Institute of TechnologyTokyoJapan

Personalised recommendations