Advertisement

Characterization of Distributed Polarization-Mode Coupling for Fiber Coils

  • Jun Yang
  • Zhangjun Yu
  • Libo YuanEmail author
Reference work entry

Abstract

Fiber coil wound by polarization-maintaining fiber is an important part of fiber optic gyroscope. Its distributed polarization-mode coupling degrades the performance of fiber optic gyroscope on drift bias. Characterization of distributed polarization-mode coupling coefficient could evaluate the quality of fiber coils. In addition, it can help improve the wound technique, and then suppress the polarization-mode coupling. The optical coherence domain polarimetry system based on white-light interferometer is a suitable instrument for characterizing the distributed polarization-mode coupling of polarization-maintaining fibers. This chapter contains the measurement and analysis of polarization-mode coupling, system performance improvement of the optical coherence domain system, dispersion effect suppression of fiber coil under test, and the diagnosis for fiber coil.

References

  1. M. Barnoski, M. Rourke, S. Jensen, R. Melville, Appl. Opt. 16, 9 (1977)CrossRefGoogle Scholar
  2. C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, A. Melloni, J. Lightwave Technol. 27, 15 (2009)CrossRefGoogle Scholar
  3. W.-S. Choi, M.-S. Jo, J. Opt. Soc. Korea 13, 4 (2009)Google Scholar
  4. B. Danielson, C. Whittenberg, Appl. Opt. 26, 14 (1987)CrossRefGoogle Scholar
  5. W. Eickhoff, R. Ulrich, Appl. Phys. Lett. 39, 9 (1981)CrossRefGoogle Scholar
  6. A. Gerges, T. Newson, D. Jackson, Appl. Opt. 29, 30 (1990)CrossRefGoogle Scholar
  7. Z. Guo, G. Zhang, X. Chen, D. Jia, T. Liu, Appl. Opt. 50, 20 (2011)Google Scholar
  8. K. Hotate, O. Kamatani, J. Lightwave Technol. 11, 10 (1993)CrossRefGoogle Scholar
  9. J. Jin, S. Wang, J. Song, N. Song, Z. Sun, M. Jiang, Opt. Fiber Technol. 19, 5 (2013)Google Scholar
  10. W. Jing, Y. Zhang, G. Zhou, H. Zhang, Z. Li, X. Man, Opt. Express 10, 18 (2002)Google Scholar
  11. A. Kumar, A. Ghatak, Polarization of light with applications in optical fibers (SPIE, Bellingham, 2011), p. 75Google Scholar
  12. Z. Li, Z. Meng, T. Liu, X. Yao, Opt. Express 21, 2 (2013)Google Scholar
  13. C. Li et al., Meas. Sci. Technol. 26, 4 (2015)Google Scholar
  14. C. Li et al., Sensors 16, 3 (2016)CrossRefGoogle Scholar
  15. Y. Ning, K. Grattan, A. Palmer, Meas. Sci. Technol. 7, 4 (1996)CrossRefGoogle Scholar
  16. C. Palavicini et al., Opt. Lett. 30, 4 (2005)CrossRefGoogle Scholar
  17. Y. Rao, Y. Ning, D. Jackson, Opt. Lett. 18, 6 (1993)Google Scholar
  18. A. Rogers, Polarization in optical fibers (Artech House, Norwood, 2008), p. 101Google Scholar
  19. T. Sakamoto, Appl. Opt. 25, 15 (1986)Google Scholar
  20. B. Szafraniec, J. Feth, R. Bergh, J. Blake, in SPIE proceedings 2510, 1995Google Scholar
  21. K. Takada, S. Mitachi, J. Lightwave Technol. 16, 8 (1998)Google Scholar
  22. K. Takada, K. Okamoto, J. Noda, JOSA A 2, 5 (1985)CrossRefGoogle Scholar
  23. K. Takada, K. Chida, J. Noda, Appl. Opt. 26, 15 (1987a)Google Scholar
  24. K. Takada, I. Yokohama, K. Chida, J. Noda, Appl. Opt. 26, 9 (1987b)Google Scholar
  25. M. Tsubokawa, T. Higashi, Y. Sasaki, J. Lightwave Technol. 7, 1 (1989)CrossRefGoogle Scholar
  26. J. Yang et al., J. Lightwave Technol. 32, 22 (2014)Google Scholar
  27. R. Youngquist, S. Carr, D. Davies, Opt. Lett. 12, 3 (1987)Google Scholar
  28. Z. Yu et al., Opt. Express 24, 2 (2016)Google Scholar
  29. L. Yuan, J. Yang, Sens. Actuators A Phys. 105, 1 (2003)CrossRefGoogle Scholar
  30. Y. Yuan et al., Photonics Res. 3, 4 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Lab of In-Fiber Integrated Optics, Ministry Education of ChinaHarbin Engineering UniversityHarbinChina
  2. 2.College of ScienceHarbin Engineering UniversityHarbinChina

Section editors and affiliations

  • Jianzhong Zhang
    • 1
  1. 1.Department of Computer ScienceHarbin Engineering UniversityHarbinChina

Personalised recommendations