Advertisement

Fiber Grating Devices

  • Christophe CaucheteurEmail author
  • Tuan Guo
Reference work entry

Abstract

Biosensors made of an optical fiber section coated with a thin noble metal layer constitute a miniaturized counterpart to the Kretschmann-Raether prism configuration. They allow easy light injection and offer remote operation in very small volumes of analyte. They are perfectly suited to yield in situ (or even possibly in vivo) molecular detection. Usually, such biosensors are obtained from a gold-coated fiber segment for which the core-guided light is outcoupled and brought into contact with the surrounding medium, either by reducing the cladding diameter (through etching or side-polishing) or by using grating coupling. In the latter case, a refractive index modulation is photo-imprinted in the fiber core. Roughly 10 years ago, surface plasmon resonance (SPR) excitation was reported with gold-coated tilted fiber Bragg gratings (TFBGs). TFBGs are short-period gratings whose refractive index modulation is slightly angled with respect to the perpendicular to the optical fiber propagation axis. These devices probe the surrounding medium with narrowband (∼200 pm) cladding mode resonances, which is compatible with the use of high-resolution interrogators as a read-out technique. These gratings remain the single configuration able to probe all the fiber cladding modes individually, with high Q-factors. These unique spectral features are used to sense various analytes, such as proteins and cells. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way to the practical use of such immunosensors, in very small volumes of analytes or even possibly in vivo.

Keywords

Surface plasmon resonance Optical fiber sensors Bragg gratings Immunosensing Cells Proteins 

References

  1. J. Albert, L.-Y. Shao, C. Caucheteur, Tilted fiber Bragg grating sensors. Laser Photonics Rev. 7, 83–108 (2013a)CrossRefGoogle Scholar
  2. J. Albert, S. Lepinay, C. Caucheteur, M.C. Derosa, High resolution grating-assisted surface plasmon resonance fiber optic aptasensor. Methods 63, 239–254 (2013b)CrossRefGoogle Scholar
  3. F. Baldini, M. Brenci, F. Chiavaioli, A. Gianetti, C. Trono, Optical fiber gratings as tools for chemical and biochemical sensing. Anal. Bioanal. Chem. 402, 109–116 (2012)CrossRefGoogle Scholar
  4. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRefGoogle Scholar
  5. B.M. Beam, N.R. Armstrong, S.B. Mendes, An electroactive fiber optic chip for spectroelectrochemical characterization of ultra-thin redox-active films. Analyst 134, 454–459 (2008)CrossRefGoogle Scholar
  6. C. Caucheteur, P. Mégret, Demodulation technique for weakly tilted fiber Bragg grating refractometer. Photon. Technol. Lett. 17, 2703–2705 (2005)CrossRefGoogle Scholar
  7. C. Caucheteur, Y.Y. Shevchenko, L.-Y. Shao, M. Wuilpart, J. Albert, High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 19, 1656–1664 (2011a)CrossRefGoogle Scholar
  8. C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors. Appl. Phys. Lett. 99, 041118 (2011b)CrossRefGoogle Scholar
  9. C. Caucheteur, V. Voisin, J. Albert, Polarized spectral combs probe optical fiber surface plasmons. Opt. Express 21, 3055–3066 (2013)CrossRefGoogle Scholar
  10. C. Caucheteur, T. Guo, J. Albert, Review of recent plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407, 3883–3897 (2015)CrossRefGoogle Scholar
  11. C. Caucheteur, T. Guo, F. Liu, B.O. Guan, J. Albert, Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 7, 13371 (2016)CrossRefGoogle Scholar
  12. C.F. Chan, C. Chen, A. Jafari, A. Laronche, D.J. Thomson, J. Albert, Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl. Opt. 46, 1142–1149 (2007)CrossRefGoogle Scholar
  13. C. Chen, J. Albert, Stain-optic coefficients of individual cladding modes of single mode fibre: theory and experiment. Electron. Lett. 42, 1027–1028 (2006)CrossRefGoogle Scholar
  14. X. Chen, J. Xu, X. Zhang, T. Guo, B.O. Guan, Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating. IEEE Photon. Technol. Lett. 29, 719–722 (2017)CrossRefGoogle Scholar
  15. R.W. Cohen, G.D. Cody, M.D. Coutts, B. Abeles, Optical properties of granular silver and gold films. Phys. Rev. B 8, 3689 (1973)CrossRefGoogle Scholar
  16. T. Erdogan, Fiber grating spectra. J. Lightwave Technol. 15, 1277–1294 (1997)CrossRefGoogle Scholar
  17. T. Erdogan, J.E. Sipe, Tilted fiber phase gratings. J. Opt. Soc. Am. A 13, 296–313 (1996)CrossRefGoogle Scholar
  18. D. Feng, W. Zhou, X. Qiao, J. Albert, High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings. Opt. Express 24, 16456–16464 (2016)CrossRefGoogle Scholar
  19. Y. Guan, X.N. Shan, S.P. Wang, P.M. Zhang, N.J. Tao, Detection of molecular binding via charge-induced mechanical response of optical fibers. Chem. Sci. 5, 4375–4381 (2014)CrossRefGoogle Scholar
  20. T. Guo, F. Liu, Y. Liu, N.K. Chen, B.O. Guan, J. Albert, In situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors. Biosens. Bioelectron. 55, 452–458 (2014)CrossRefGoogle Scholar
  21. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D.W. Pohl, Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 77, 1889–1892 (1996)CrossRefGoogle Scholar
  22. J. Homola, M. Piliarik, Surface plasmon resonance (SPR) sensors. Springer Ser. Chem. Sensors Biosens. 4, 45–67 (2006)CrossRefGoogle Scholar
  23. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999)CrossRefGoogle Scholar
  24. X.P. Huang, S.P. Wang, X.N. Shan, X.J. Chang, N.J. Tao, Flow-through electrochemical surface plasmon resonance: detection of intermediate reaction products. J. Electroanal. Chem. 649, 37–41 (2010)CrossRefGoogle Scholar
  25. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon. Technol. Lett. 16, 1149–1151 (2004)CrossRefGoogle Scholar
  26. K. Imai, T. Okazaki, N. Hata, S. Taguchi, K. Sugawara, H. Kuramitz, Simultaneous multiselective spectroelectrochemical fiber-optic sensor: demonstration of the concept using methylene blue and ferrocyanide. Anal. Chem. 87, 2375–2382 (2015)CrossRefGoogle Scholar
  27. X.Q. Jiang, Z.J. Cao, H. Tang, L. Tan, Q.J. Xie, S.Z. Yao, Electrochemical surface plasmon resonance studies on the deposition of the charge-transfer complex from electrooxidation of o-tolidine and effects of dermatan sulfate. Electrochem. Commun. 10, 1235–1237 (2008)CrossRefGoogle Scholar
  28. E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmon excited by light. Z. Naturforsch. 23, 2135 (1968)Google Scholar
  29. G. Laffont, P. Ferdinand, Tilted short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 12, 765–772 (2001)CrossRefGoogle Scholar
  30. B. Liedberg, C. Nylander, I. Lungstrom, Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4, 299–304 (1984)CrossRefGoogle Scholar
  31. J. Lu, W. Wang, S.P. Wang, X.N. Shan, J.H. Li, N.J. Tao, Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding. Anal. Chem. 84, 327–333 (2012)CrossRefGoogle Scholar
  32. V. Malachovska, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, C. Caucheteur, Fiber-optic SPR immunosensors tailored to target epithetial cells through membrane receptors. Anal. Chem. 87, 5957–5965 (2015)CrossRefGoogle Scholar
  33. G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Express 1, 1090–1099 (2011)CrossRefGoogle Scholar
  34. K. Nakamoto, R. Kurita, O. Niwa, Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique. Anal. Chem. 84, 3187–3191 (2012)CrossRefGoogle Scholar
  35. P. Offermans, M.C. Shaafsma, S.R.K. Rodriguez, Y. Zhang, M. Crego-Calama, S.H. Brongersma, J.G. Rivas, Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5, 5151–5157 (2011)CrossRefGoogle Scholar
  36. A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999)Google Scholar
  37. J. Pollet, F. Delport, K.P.F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, J. Lammertyn, Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosens. Bioelectron. 25, 864–869 (2009)CrossRefGoogle Scholar
  38. C. Ribaut, V. Voisin, V. Malachovska, V. Dubois, P. Mégret, R. Wattiez, C. Caucheteur, Small biomolecule immunosensing with plasmonic optical fiber grating sensor. Biosens. Bioelectron. 77, 315–322 (2016).  https://doi.org/10.1016/j.bios.2015.09.019CrossRefGoogle Scholar
  39. R.S. Sennett, G.D. Scott GD, The structure of evaporated metal films and their optical properties. J.Opt. Soc. Am. 40, 203–211 (1950)CrossRefGoogle Scholar
  40. A.K. Sharma, J. Rajan, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J. 7, 1118–1129 (2007)CrossRefGoogle Scholar
  41. Y.Y. Shevchenko, J. Albert, Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt. Lett. 32, 211–213 (2007)CrossRefGoogle Scholar
  42. Y. Shevchenko, T.J. Francis, D.A.D. Blair, R. Walsh, M.C. DeRosa, J. Albert, In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal. Chem. 83, 7027–7034 (2011)CrossRefGoogle Scholar
  43. Y. Shevchenko, G. Camci-Unal, D.F. Cuttica, M.R. Dokmeci, J. Albert, A. Khademhosseini, Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens. Bioelectron. 56, 359–367 (2014)CrossRefGoogle Scholar
  44. V. Svorcik, J. Siegel, P. Sutta, J. Mistrik, P. Janicek, P. Worsch, Z. Kolská, Annealing of gold nanostructures sputtered on glass substrate. Appl. Phys. A 102, 605–610 (2011)CrossRefGoogle Scholar
  45. J.J. Tu, C.C. Homes, M. Strongin, Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition. Phys. Rev. Lett. 90, 017402 (2003)CrossRefGoogle Scholar
  46. A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan, J.E. Sipe, Long-period fiber gratings as band-rejection filters. J. Lightwave Technol. 14, 58–65 (1996)CrossRefGoogle Scholar
  47. V. Voisin, C. Caucheteur, P. Mégret, J. Albert, Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states. Appl. Opt. 50, 4257–4261 (2011)CrossRefGoogle Scholar
  48. V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosens. Bioelectron. 51, 249–254 (2014)CrossRefGoogle Scholar
  49. S.P. Wang, X.P. Huang, X.N. Shan, K.J. Foley, N.J. Tao, Electrochemical surface plasmon resonance: basic formalism and experimental validation. Anal. Chem. 82, 935–941 (2010)CrossRefGoogle Scholar
  50. I.M. White, X.D. Fan, On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)CrossRefGoogle Scholar
  51. Y. Yuan, T. Guo, X.H. Qiu, J.H. Tang, Y.Y. Huang, L. Zhuang, S.G. Zhou, Z.H. Li, B.O. Guan, X.M. Zhang, J. Albert, Electrochemical surface Plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms. Anal. Chem. 88, 7609–7761 (2016)CrossRefGoogle Scholar
  52. K. Zhou, A.G. Simpson, L. Zhang, I. Bennion, Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers. IEEE Photon. Technol. Lett. 15, 936–938 (2003)CrossRefGoogle Scholar
  53. K. Zhou, L. Zhang, X. Chen, I. Bennion, Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80° tilted structures. Opt. Lett. 31, 1193–1195 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Electromagnetism and Telecommunication DepartmentUniversity of MonsMonsBelgium
  2. 2.Institute of Photonics TechnologyJinan UniversityGuangzhouChina

Section editors and affiliations

  • Tuan Guo
    • 1
  1. 1.Institute of Photonics TechnologyJinan UniversityGuangzhouChina

Personalised recommendations