Polymer Optical Fibers

  • Kishore Bhowmik
  • Gang-Ding PengEmail author
Reference work entry


Polymer Optical Fibers (POF) have been developed as early as silica optical fibers. Because of their significantly larger material attenuation, POFs are limited to lower data rate and shorter distance transmission applications and they have long been overshadowed by the success of silica fibers. Nevertheless, continuing advances and emergence of new POF technologies bring out properties very attractive for many industrial applications. In this chapter, we review the development of POF, POF materials and fabrications, different types of POFs, and some of POF applications.


Polymer optical fiber (POF) Fiber Bragg grating (FBG) Poly methyl methacrylates (PMMA) Step-Index polymer optical fiber (SI-POF) Graded index polymer optical fiber (GI-POF) 


  1. J.R. Alcala, S.C. Liao, J. Zheng, Real time frequency domain fiberoptic temperature sensor. IEEE Trans. Biomed. Eng. 42(5), 471–476 (1995)CrossRefGoogle Scholar
  2. R.E. Ansorge et al., UA2 collaboration. Nucl. Instr. Meth. A 265, 33 (1988). P. Annis et al., CHORUS collaboration. Nucl. Instr. Meth. A 412, 19–23 (1998)CrossRefGoogle Scholar
  3. L. Archambault, A.S. Beddar, L. Gingras, F. Lacroix, R. Roy, L. Beaulieu, Water-equivalent dosimeter array for small-field external beam radiotherapy. Med. Phys. 34(5), 1583–1592 (2007)CrossRefGoogle Scholar
  4. M. Asai, R. Hirose, A. Kondo, Y. Koike, High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process. J. Lightwave Technol. 25, 3062 (2007)CrossRefGoogle Scholar
  5. S. Atakaramians, A. Stefani, H. Li, M.S. Habib, J.G. Hayashi, A. Tuniz, X. Tang, et al., Fiber-drawn metamaterial for THz waveguiding and imaging. J. Infrared Millimeter Terahertz Waves 38(9), 1162–1178 (2017)CrossRefGoogle Scholar
  6. A.T. Augousti, J. Mason, K.T.V. Grattan, A simple fibre optic level sensor using fluorescent fibre. Rev. Sci. Instrum. 61, 3854–3858 (1990)CrossRefGoogle Scholar
  7. L. Bansal, S. Khalil, M.A. El-Sherif, Fiber optic neurotoxin sensor. Bioengineering, Proceedings of the Northeast Conference, pp. 221–222, 2002Google Scholar
  8. E. Barni, G. Viscardi, C. D’Ambrosio, T. Gys, H. Leutz, D. Piedrossi, D. Puertolas, S. Tailhardat, U. Gensch, H. Gusten, P. Destruel, T. Shimzu, O. Shinij, M. Garg, A. Menchikov, Development of small diameter scintillating fibres detectors for particle tracking. POF’96, Fifth international conference on plastic optical fibres and applications, Paris, pp. 50–57, 22–24 Oct 1996Google Scholar
  9. R.J. Bartlett, R. Philip-Chandy, P. Eldridge, D.F. Merchant, R. Morgan, P. Scully, Plastic optical fibre sensors and devices. Trans. Inst. Meas. Control. 22(5), 431–457 (2000)CrossRefGoogle Scholar
  10. G. Barton, M.A. van Eijkelenborg, G. Henry, M.C.J. Large, J. Zagari, Fabrication of microstructured polymer optical fibres. Opt. Fiber Technol. 10(4), 325–335 (2004)CrossRefGoogle Scholar
  11. J.K. Beasley, R. Beckerbauer, H.M. Schleinitz, F.C. Wilson, Low attenuation optical fiber of deuterated polymer. U.S. Patent 4,138,194, issued 6 Feb 1979Google Scholar
  12. S. Bian, M.G. Kuzyk, Phase conjugation by low-power continuous-wave degenerate four-wave mixing in nonlinear optical polymer fibers. Appl. Phys. Lett. 84(6), 858–860 (2004)CrossRefGoogle Scholar
  13. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fibre. Opt. Lett. 22, 961–963 (1997)CrossRefGoogle Scholar
  14. H. Blumenfeld, M. Boudinaud, J.C. Thevenin, Scintillating plastic fibres for calorimetry and tracking devices. IEEE Trans. Nucl. Sci. 33, 54–56 (1986)CrossRefGoogle Scholar
  15. H. Blumenfeld, M. Bourdinaud, J.C. Thevenin, Plastic fibres in high energy physics. Nucl. Inst. Methods 257, 603–606 (1987)CrossRefGoogle Scholar
  16. H. Blumenfeld, M. Bourdinaud, J.C. Thevenin, Characterization of fluorescent plastic optical fibers for x-ray beam detection. Proc. SPIE Int. Soc. Opt. Eng. 1592, 96–107 (1991)Google Scholar
  17. M. Borecki, J. Kruszewski, Intelligent high resolution sensor for detecting of liquid mediums. Opt. Appl. 31(4), 691–699 (2001)Google Scholar
  18. D. Bosc, C. Toinen, Full polymer single-mode optical fiber. IEEE Photon. Technol. Lett. 4(7), 749–750 (1992)CrossRefGoogle Scholar
  19. T.E. Brook, M.N. Taib, R. Narayanaswamy, Extending the range of a fibre-optic relative-humidity sensor. Sensors Actuators B Chem. B39(1–3 Part 2), 272–276 (1997)CrossRefGoogle Scholar
  20. J. Canning, M.A. Hossain, C. Han, L. Chartier, K. Cook, T. Athanaze, Drawing optical fibers from three-dimensional printers. Opt. Lett. 41(23), 5551–5554 (2016)CrossRefGoogle Scholar
  21. R.N. Capps, I.J. Bush, S.T. Lieberman, S.E. Eveland, Evaluation of environmental effects on candidate polymeric materials for underwater optoacoustic sensors. Ind. Eng. Chem. Prod. Res. Dev. 21(4), 540–545 (1982)CrossRefGoogle Scholar
  22. P. Castro, A.A. Sagüés, E.I. Moreno, L. Maldonado, J. Genesca, Characterization of activated titanium solid reference electrodes for corrosion testing of steel in concrete. Corrosion 52, 609–617 (1996)CrossRefGoogle Scholar
  23. N. Cennamo, D. Massarotti, R. Galatus, L. Conte, L. Zeni, Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber. Sensors 13(1), 721–735 (2013)CrossRefGoogle Scholar
  24. R.P. Chandy, P.J. Scully, C. Whitworth, D. Fearnside, A novel fibre optic sensor for the determination of environmental turbidity (poster), Annual Meeting of the International Association for Great Lakes Research in Canada, Symposium on Biomarkers and Biomonitors as Indicators of Environmental Change, 18–22 May 1998Google Scholar
  25. R.P. Chandy, P.J. Scully, C. Whitworth, Integrated, multi-angle, low turbidity measurement using fluorescent plastic optical fibre. Proc. SPIE 4185, 374–377 (2000)Google Scholar
  26. C. Cheng, M. Sansalone, The impact-echo response of concrete plates containing delaminations—numerical experimental and field studies. Mater. Struct. 26, 274–285 (1993)CrossRefGoogle Scholar
  27. K.S. Chiang, V. Rastogi, Ultra-large-core single-mode fiber for optical communications: the segmented cladding fiber. Optical fiber communication conference OFC 2002, paper ThGG6, pp. 620–621, 2002Google Scholar
  28. B. Chiron, Anamorphosor for scintillating plastic optical fiber applications. Proc. SPIE 1592, 158–164 (1991)CrossRefGoogle Scholar
  29. C. Colla, P.C. Das, D.N. McCann, M.C. Forde, Sonic, electromagnetic and impulse radar investigation of stone masonry bridges. NDTE Int. 30, 249–254 (1998)CrossRefGoogle Scholar
  30. K. Cook, J. Canning, S. Leon-Saval, Z. Reid, M.A. Hossain, J.-E. Comatti, Y. Luo, G.-D. Peng, Air-structured optical fiber drawn from a 3D-printed preform. Opt. Lett. 40(17), 3966–3969 (2015)CrossRefGoogle Scholar
  31. K. Cook, G. Balle, J. Canning, L. Chartier, T. Athanaze, M.A. Hossain, C. Han, J.-E. Comatti, Y. Luo, G.-D. Peng, Step-index optical fiber drawn from 3D printed preforms. Opt. Lett. 41(19), 4554–4557 (2016)CrossRefGoogle Scholar
  32. R.F. Cregan, B.J. Mangan, J.C. Knight, et al., Science 285, 1537–1539 (1999)CrossRefGoogle Scholar
  33. A.K. Dattamajumdar, J.A. Myers, A.H. Proctor, D.S. Levine, P.L. Blount, B.J. Reid, R.W. Martin, Novel low-cost fiber-optic colorimetric instrument to rapidly screen pre-malignant esophageal tissue, in Proc. SPIE, vol. 3253, (1998), pp. 56–65Google Scholar
  34. W. Daum, W. Hammer, K. Mader, Spectral transmittance of polymer optical fibres before and after accelerated aging. Proceedings POF Conference ’97, Kauai, Hawaii, pp. 14–15, 1997Google Scholar
  35. B.J. Deboux, E. Lewis, P.J. Scully, R. Edwards, A novel technique for optical fibre pH sensing based on methylene blue adsorption. J. Lightwave Technol. 13, 1407–1414 (1995)CrossRefGoogle Scholar
  36. P. Destruel, J. Farenc, A. Saad, X. Liop, Luminescent plastic optical fibers in the field of active sensors. First plastic optical fibres and applications conference, Paris, 74–79, 22–23 June 1992Google Scholar
  37. V. Eijkelenborg, A. Martijn, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N.A. Issa, I. Bassett, et al., Microstructured polymer optical fibre. Opt. Express 9(7), 319–327 (2001)CrossRefGoogle Scholar
  38. C. Emslie, Review polymer optical fibres. J. Mat. Sci. 23, 2281–2293 (1988)CrossRefGoogle Scholar
  39. J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, M. Lescure, Fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment. Rev. Sci. Instrum. 65(1), 155–160 (1994)CrossRefGoogle Scholar
  40. M. Ferenets, H. Myllymäki, K. Grahn, A. Sipilä, A. Harlin, Manufacturing methods for multi step index plastic optical fiber materials. Autex Research Journal 4(4), 163–173 (2004)Google Scholar
  41. J.A. Ferguson, D.R. Walt, Optical fibers make sense of chemicals. Photonics Spectra 31(3) (1997)Google Scholar
  42. Y. Fujimoto, E. Shintaku, S.C. Kim, Structural monitoring for fatigue crack detection and prediction. Proc. Int. Offshore Polar Eng. Conf 4, 227–235 (1996)Google Scholar
  43. R.M. Gadelrab, The effect of delamination on the natural frequencies of a laminated composite beam. J. Sound Vib. 197, 283–292 (1996)CrossRefGoogle Scholar
  44. R. Galatus, P. Farago, J. Vallés, Optical data transmission with plastic scintillating fibers. In Fiber Lasers and Glass Photonics: Materials Through Applications, vol. 10683, p. 106832E. International Society for Optics and Photonics (2018)Google Scholar
  45. G. Giaretta, W. White, M. Wegmuller, T. Onishi, High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m). IEEE Photon. Technol. Lett. 12(3), 347–349 (2000)CrossRefGoogle Scholar
  46. N.D.W. Glossop, An embedded fiber optic sensor for impact damage detection in compositematerials, Ph.D. Thesis, University of Toronto, Institute for Aerospace Studies, 1989Google Scholar
  47. K.T.V. Grattan, D. Kalymnios, Fibre optic temperature measurement – the possibilities with POF. 7th International Plastic Optical Fibres Conference ’98, Berlin, pp. 163–170, 5–8 Oct 1998Google Scholar
  48. H. Guerrero, J.L. Escudero, E. Bernabeu, Magnetic-field sensor using plastic optical fiber and polycrystalline CdMnTe. Sensors Actuators A Phys 39(1), 25–28 (1993)CrossRefGoogle Scholar
  49. H. Guerrero, J.L. Escudero, E. Bernabeu, Magneto-optical tachometer for anti-lock braking systems using plastic optical fibre. Meas. Sci. Technol. 5(5), 607–610 (1994)CrossRefGoogle Scholar
  50. S. Hadjiloucas, L.S. Karatzas, D.A. Keating, M.J. Usher, A new plastic optical fibre displacement transducer, in Trends in Optical Fibre Metrology and Standards, NATO ASI Series, ed. by O. D. D. Soares (Ed), (1994), pp. 829–830Google Scholar
  51. S. Hadjiloucas, J. Irvine, D.A. Keating, Feedback dew-point sensor utilizing optimally cut plastic optical fibres. Meas. Sci. Technol. 11(1), 1–10 (2000)CrossRefGoogle Scholar
  52. A. Harlin, M. Makinen, A. Vuorivirta, Development of polymeric optical fibre fabrics as illumination elements and textile displays. Autex Res. J 3(1), 8 (2003)Google Scholar
  53. P.D. Harris, M.K. Andrews, A miniature dew-point hygrometer based on capacitance measurement, in Sensors VI, Technology, Systems and Applications, Sensors Series, ed. by K. T. V. Grattan, A. T. Augousti (Eds), (Institute of Physics Publishing, Bristol, 1993), p. 435Google Scholar
  54. F. Hasseinibalim, Fluorescein coated plastic optical fibre humidity sensor, M.Sc. thesis, Liverpool John Moores University, 1997Google Scholar
  55. M.R. Hawks, I. Dajani, C.A. Kutsche, F. Ghebremichael, Modeling and prototyping of polymer fiber based chemical and biological agent sensors. Proc. SPIE 4036, 115–122 (2000)CrossRefGoogle Scholar
  56. H. Hecht, M. Kolling, A low-cost optode-array measuring system based on 1 mm plastic optical fibers – new technique for in situ detection and quantification of pyrite weathering processes. Sensors Actuators B Chem. 81(1), 76–82 (2001)CrossRefGoogle Scholar
  57. R. Hirose, M. Asai, A. Kondo, Y. Koike, Graded-index plastic optical Fiber prepared by the coextrusion process. Appl. Opt. 47, 4177 (2008)CrossRefGoogle Scholar
  58. J. Huang, D. Křemenáková, J. Militký, V. Lédl, Improvement and evenness of the side illuminating effect of side emitting optical fibers by fluorescent polyester fabric. Text. Res. J., 0040517518783344 (2018)Google Scholar
  59. J. Hugenschmidt, Concrete bridge inspection with mobile GPR system. Constr. Build. Mater. 16, 147–154 (2002)CrossRefGoogle Scholar
  60. Introduction to K2K Experiment.
  61. N. Ioannides, D. Kalymnios, I.W. Rogers, An optimised plastic optical fibre (POF) displacement sensor. POF’96, Fifth International Conference on Plastic Optical Fibres and Applications, France, pp. 251–255, 22–24 Oct 1996Google Scholar
  62. T. Ishigure, E. Nihei, Y. Koike, High bandwidth (2GHzkm) low loss (56dB/km) GI polymer optical fiber. SPIE 1799, 67 (1992)Google Scholar
  63. T. Ishigure, E. Nihei, Y. Koike, Graded-index polymer optical fiber for high-speed data communication. Appl. Opt. 33(19), 4261–4266 (1994)CrossRefGoogle Scholar
  64. T. Ishigure, A. Horibe, E. Nihei, Y. Koike, High-bandwidth, high-numerical aperture graded-index polymer optical fiber. J. Lightwave Technol. 13, 1686 (1995)CrossRefGoogle Scholar
  65. T. Ishigure, A. Horibe, E. Nihei, Y. Koike, Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links. Appl. Opt. 35, 2048 (1996)CrossRefGoogle Scholar
  66. T. Ishigure, M. Sato, E. Nihei, Y. Koike, Thermally stable GIPOF. Proceedings POF Conference ’97, Hawaii, pp. 142–143, 22–25 Sept 1997Google Scholar
  67. T. Ishigure, M. Sato, E. Nihei, Y. Koike, Graded-index polymer optical fiber with high thermal stability of bandwidth. Jpn. J. Appl. Phys. 37, 3986 (1998)CrossRefGoogle Scholar
  68. W. Jin, Multiplexed FBG sensors and their applications. Proc. SPIE Int. Soc. Opt. Eng. 3897, 468–479 (1999)Google Scholar
  69. T. Kaino, Preparation of plastic optical fibers for near – IR region transmission. J. Polym. Sci. A Polym. Chem. 25(1), 37–46 (1987)CrossRefGoogle Scholar
  70. T. Kaino, K. Jinguji, S. Nara, Low loss poly(methyl methacrylate-d8) core optical fibers. Appl. Phys. Lett. 42(7), 567 (1983)CrossRefGoogle Scholar
  71. M. Kamiya, H. Ikeda, Simultaneous transmission of vibration sensor position control data and measured vibration data in opposite directions through single plastic optical fiber, in IEEE Symposium on Emerging Technologies & Factory Automation, ETFA, vol. 1, (1996), pp. 82–86Google Scholar
  72. M. Kamiya, H. Ikeda, S. Shinohara, H. Yoshida, Data collection and transmission system for vibration test, in Conference Record – IAS Annual Meeting (IEEE Industry Applications Society), vol. 3, (1998), pp. 1679–1685Google Scholar
  73. A.D. Kersey, M.A. Davis, H.J. Patrick, Fiber Grating Sensors. J. Lightwave Technol. 15(8), 1442–1462 (1997)CrossRefGoogle Scholar
  74. S.S. Kessler, S.M. Spearing, M.J. Atalla, C.E.S. Cesnik, C. Soutis, Structural health monitoring in composite materials using frequency response methods. Proc. SPIE 4336, 1–11 (2001)CrossRefGoogle Scholar
  75. B.J. Kim et al., Tracking performance of the scintillating fiber detector in the K2K experiment. Nucl. Inst. Methods A 497, 450–466 (2003)CrossRefGoogle Scholar
  76. K.F. Klein, S. Riesel, O. Schobert, L. Velte, Three colour sensor for VIS- and UV-A-region. POF ’96, Fifth International Conference on Plastic Optical Fibres & Applications, Paris, pp. 213–219, 22–24 Oct 1996Google Scholar
  77. J.C. Knight, T.A. Birks, R.F. Cregan, et al., Electron. Lett. 34(13), 1347–1348 (1999)CrossRefGoogle Scholar
  78. K. Koganezawa, T. Onishi, Progress in perfluorinated GI-POF. Proceedings of the International POF Technical Conference, POF’2000, pp. 19–21, 2000Google Scholar
  79. Y. Koike, Graded-index and single-mode polymer optical fibers. MRS Online Proceedings Library Archive 247, 1992Google Scholar
  80. Y. Koike, A. Inoue, High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission. J. Lightwave Technol. 34(6), 1551–1555 (2016)CrossRefGoogle Scholar
  81. Y. Koike, M. Narutomi, Graded-refractive-index-optical material and method for its production, U.S. Patent 5,783,636 (1998)Google Scholar
  82. Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, Gradient – index polymer materials and their optical devices. Polym. Eng. Sci. 29(17), 1200–1204 (1989)CrossRefGoogle Scholar
  83. Y. Koike, T. Ishigure, E. Nihei, High-bandwidth graded-index polymer optical fiber. J. Lightwave Technol. 13, 1475 (1995)CrossRefGoogle Scholar
  84. S. Kondo, T. Ishigure, Y. Koike, in 10th Microoptics Conference (Jena, 2004), p. B–7Google Scholar
  85. N.B. Kosa, Key issues in selecting plastic optical fibers used in novel medical sensors. Proc. SPIE 1592, 114–121 (1991)CrossRefGoogle Scholar
  86. T. Kosaka, N. Takeda, T. Ichiyama, Detection of cracks in FRP by using embedded plastic optical fiber. Mater. Sci. Res. Int. 5(3), 206–209 (1999)Google Scholar
  87. J. Kruszewski, M. Beblowska, M. Borecki, Fibre optic nephelometer. Proc. SPIE 5064, 128–131 (2003)CrossRefGoogle Scholar
  88. K.S.C. Kuang, W.J. Cantwell, The use of plastic optical fibre sensors for monitoring the dynamic response of fibre composite beams. Meas. Sci. Technol. 14(6), 736–745 (2003a)CrossRefGoogle Scholar
  89. K.S.C. Kuang, W.J. Cantwell, Detection of impact damage in thermoplastic-based glass fibre composites using embedded optical fibre sensors. J Thermoplast. Compos. Mater. 56, 213–229 (2003b)CrossRefGoogle Scholar
  90. K.S.C. Kuang, W.J. Cantwell, The use of plastic optical fibres and shape memory alloys for damage assessment and damping control in composite materials. Meas. Sci. Technol. 14, 1305–1313 (2003c)CrossRefGoogle Scholar
  91. K.S.C. Kuang, R. Kenny, M.P. Whelan, W.J. Cantwell, P.R. Chalker, Residual strain measurement and impact response of optical fibre Bragg grating sensors in fibre metal laminates. Smart Mater. Struct. 10, 338–346 (2001)CrossRefGoogle Scholar
  92. K.S.C. Kuang, W.J. Cantwell, P.J. Scully, Evaluation of novel plastic optical fibre sensor for axial strain and bend measurements. Meas. Sci. Technol. 13, 1523–1534 (2002a)CrossRefGoogle Scholar
  93. K.S.C. Kuang, W.J. Cantwell, P.J. Scully, An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements. Meas. Sci. Technol. 13(10), 1523–1534 (2002b)CrossRefGoogle Scholar
  94. K.S.C. Kuang, C.W.J. Akmaluddin, C. Thomas, Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors. Meas. Sci. Technol. 14(2), 205–216 (2003)CrossRefGoogle Scholar
  95. K.S.C. Kuang, S.T. Quek, C.G. Koh, W.J. Cantwell, P.J. Scully, Plastic optical fibre sensors for structural health monitoring: a review of recent progress. J. Sen. 2009 (2009)Google Scholar
  96. H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, M. Fujita, Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band, Postdeadline paper CPD3. Conference on Lasers and Electro-Optics CLEO 2001, BaltimoreGoogle Scholar
  97. K. Kurosawa, T. Sawa, H. Sawada, A. Tanaka, N. Wakatsuki, Diagnostic technique for electrical power equipment using fluorescent fiber. Proc. SPIE 1368, 150–156 (1991)CrossRefGoogle Scholar
  98. K. Kurosawa, T. Sowa, K. Tanaka, Y. Yamada, Arc-discharge light detection using fluorescent plastic optical fiber in SF6 gas. 12th International Conference on Optical Fiber Sensors. Technical Digest. Postconference Edition, pp. 249–252, 1997Google Scholar
  99. M.G. Kuzuk, U.C. Paek, C.W. Dirk, Guest-host polymer fiber for non-linear optics. Appl. Phys. Lett. 59, 902–904 (1991)CrossRefGoogle Scholar
  100. M.F. Laguesse, Optical detection and localization of holes in strips using a fluorescent fiber sensor. IEEE Trans. Instrum. Meas. 39(1), 242–246 (1990)CrossRefGoogle Scholar
  101. M.F. Laguesse, Sensor applications of fluorescent plastic optical fibres. Proceedings of POF’93, pp. 14–19, 1993Google Scholar
  102. A. Leal-Junior, A. Frizera-Neto, C. Marques, M.J. Pontes, Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect. Sensors 18(3), 916 (2018)CrossRefGoogle Scholar
  103. S. Lee, U.C. Paek, Y. Chung, Bandwidth enhancement of plastic optical fiber with multi-step core by thermal diffusion. Microw. Opt. Technol. Lett. 39(2), 129–131 (2003)CrossRefGoogle Scholar
  104. C. Lethien, C. Loyez, J.-P. Vilcot, N. Rolland, P.A. Rolland, Exploit the bandwidth capacities of the perfluorinated graded index polymer optical fiber for multi-services distribution. Polymers 3(3), 1006–1028 (2011)CrossRefGoogle Scholar
  105. S.-C. Liao, Z. Xu, J.A. Izatt, J.R. Alcala, Real-time frequency-domain combined temperature and oxygen sensor using a single optical fiber, in Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings, vol. 5, (1997), pp. 2333–2336Google Scholar
  106. S. Liehr, Polymer fiber sensors for structural and civil engineering applications, in Handbook of Optical Fibers, ed. by G. D. Peng (Ed), (Springer, 2018)Google Scholar
  107. B.T. Liu, M.Y. Hsieh, W.C. Chen, J.P. Hsu, Gradient-index polymer optical fiber preparation through a co-extrusion process. Polym. J. 31, 233 (1999)CrossRefGoogle Scholar
  108. H.Y. Liu, G.D. Peng, P.L. Chu, Polymer fiber Bragg gratings with 28dB transmission rejection. IEEE Photon. Technol. Lett. 14, 935–937 (2002)CrossRefGoogle Scholar
  109. H.B. Liu, H.Y. Liu, G.D. Peng, P.L. Chu, Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings. Opt. Commun. 219, 139–142 (2003a)CrossRefGoogle Scholar
  110. H.B. Liu, H.Y. Liu, G.D. Peng, Different types of polymer fiber Bragg gratings (FBGs) and their strain/thermal properties, in Optical Memory and Neural Networks special issue on “Holographic Memory and Applications”, vol. 12, (2003b), p. 147Google Scholar
  111. H.Y. Liu, G.D. Peng, P.L. Chu, Observation of type I and type II Bragg grating behaviour in polymer optical fibre. Opt. Commun. 220(4–6), 337 (2003c)CrossRefGoogle Scholar
  112. Y. Liu, C. Zhang, C. Brackley, S. Yang, Y. Lu, G.D. Peng, Extrusion fabrication of sea-island bicomponent microstructured polymer optical fibre. Proceedings of the 18th international conference on plastic optical fibers, 9–11 Sept 2009, Sydney, Paper 42 (2009)Google Scholar
  113. Y. Liu, C. Zhang, C. Brackley, S. Yang, F. Yang, G.D. Peng, A new method to fabricate sea-island bicomponentmicrostructured polymer optical fibre, in Frontier Photonics and Electronics, ed. by G.D. Peng, J. Canning, Z. He, Proceedings of Joint Workshop on Frontier Photonics and Electronics (ISBN:[978-0-9807815-1-9]), (UNSW, Sydney, 2010), Paper [6–7], pp. 108–109Google Scholar
  114. Y. Luo, Q. Zhang, H. Liu, G.-D. Peng, Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser. Opt. Lett. 35(5), 751–753 (2010)CrossRefGoogle Scholar
  115. K. Lyytikäinen, J. Zagari, G. Barton, et al., Model. Simul. Mater. Sci. Eng 12, S255–S265 (2004)CrossRefGoogle Scholar
  116. B.D. Macraith, C.M. McDonagh, G. O’Keefe, A.K. McEvoy, T. Butler, F.R. Sheridan, Sol-gel coatings for optical chemical sensors and biosensors. Sensors Actuators B29, 51–57 (1995)CrossRefGoogle Scholar
  117. C.A.F. Marques, G.D. Peng, D.J. Webb, Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Opt. Express 23(5) (2015). Scholar
  118. D. Merchant, P.J. Scully, R. Edwards, J. Grabowski, Optical fibre fluorescence & toxicity sensor. Sensors Actuators B Chem. B48, 476–484 (1998)CrossRefGoogle Scholar
  119. D.F. Merchant, P.J. Scully, N.F. Schmitt, Chemical tapering of polymer optical fibre. Sensors Actuators A 76, 365–371 (1999)CrossRefGoogle Scholar
  120. M. Mignanelli, K. Wani, J. Ballato, et al., Opt. Express 15(10), 6183–6189 (2007)CrossRefGoogle Scholar
  121. Mitsubish Rayon Co. UK Patent 1,431,157 (1974); UK Patent 1,499,950 (1974)Google Scholar
  122. M. Morisawa, S. Muto, POF sensors for detecting oxygen in air and water, 7th international plastic optical fibres conference ’98, Berlin, pp. 243–44, 5–8 Oct 1997Google Scholar
  123. M. Morisawa, G. Vishnoi, T. Hosaka, S. Muto, Comparative studies on sensitivity and stability of fiber-optic oxygen sensor using several cladding polymers. Jpn. J. Appl. Phys. 37(8), 4620–4623 (1998a)CrossRefGoogle Scholar
  124. M. Morisawa, G. Vishnoi, S. Muto, Optical sensing of dissolved oxygen using dye-doped plastic optical fiber. Trans. Inst. Electr. Eng. Jpn. Part E 118-E(12), 566–571 (1998b)Google Scholar
  125. M. Morisawa, K. Uchiyama, G. Vishnoi, S. Muto, C.X. Liang, H. Machida, K. Kiso, Improvement of sensitivity in plastic optical fiber gasoline leakage sensors. Proc SPIE 3540, 175–182 (1999)CrossRefGoogle Scholar
  126. M. Morisawa, H. Kozu, Y. Amemiya, S. Muto, Optical sensing of alkane and gasoline vapors using swelling plastic optical fiber. Trans. Inst. Electr. Eng. Jpn. Part E 120-E(10), 452–457 (2000)Google Scholar
  127. M. Morisawa, Y. Amemiya, H. Kohzu, C.X. Liang, S. Muto, Plastic optical fibre sensor for detecting vapour phase alcohol. Meas. Sci. Technol. 12(7), 877–881 (2001)CrossRefGoogle Scholar
  128. S. Muto, A. Fukasawa, M. Kamimura, Fiber humidity sensor using fluorescent dye doped plastics. Jpn. J. Appl. Phys. 28, L1065–L1066 (1989)CrossRefGoogle Scholar
  129. S. Muto, A. Fukasawa, T. Ogawa, M. Morisawa, H. Ito, Breathing monitor using dye-doped optical fibre. Jpn. J. Appl. Phys. 29, 1618–1619 (1990)CrossRefGoogle Scholar
  130. S. Muto, H. Sato, T. Hosaka, Optical humidity sensor using fluorescent plastic fiber and its application to breathingcondition monitor. Jpn. J. Appl. Phys. 33, 6060–6064 (1994)CrossRefGoogle Scholar
  131. S. Muto, K. Uchiyama, G. Vishnoi, M. Morisawa, C.X. Liang, H. Machida, K. Kiso, Plastic optical fiber sensors for detecting leakage of alkane gases and gasoline vapors. Proc. SPIE 3417, 61–69 (1998)CrossRefGoogle Scholar
  132. S. Muto, O. Suzuki, T. Amano, M. Morisawa, A plastic optical fibre sensor for real-time humidity monitoring. Meas. Sci. Technol. 14(6), 746–750 (2003)CrossRefGoogle Scholar
  133. R. Naka, K. Watanabe, J. Kawarabayashi, A. Uritani, T. Iguchi, N. Hayashi, N. Kojima, T. Yoshida, J. Kaneko, H. Takeuchi, Radiation distribution sensing with normal optical fiber. IEEE Trans. Nucl. Sci. 48(6 II), 2348–2351 (2001)CrossRefGoogle Scholar
  134. E.J. Netto, J.I. Peterson, M. McShane, V. Hampshire, Fiber-optic broad-range pH sensor system for gastric measurements. Sensors Actuators B Chem. B29(1–3), 157–163 (1995)CrossRefGoogle Scholar
  135. S.R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A.E. Willner, Y. Koike, Transmission of 40 Gb/s DPSK and OOK at 1.55 μm through 100 m of plastic optical fiber, ECOC 2008. 34th European conference on, pp. 1–2. IEEE (2008)Google Scholar
  136. M. Ogita, K. Yoshimura, M.A. Mehta, T. Fujinami, Detection of critical micelle concentration based on the adsorption effect using optical fibers. Jpn. J. Appl. Phys. Pt. 2 Lett. 37(1 A-B, 15), L85–L87 (1998)CrossRefGoogle Scholar
  137. M. Ogita, Y. Nagai, M.A. Mehta, T. Fujinami, Application of the absorption effect of optical fibers for the determination of critical micelle concentration. Sensors Actuators B Chem. 64(1), 147–151 (2000)CrossRefGoogle Scholar
  138. Y. Ohtsuka, I. Nakamoto, Light – focusing plastic rod prepared by photocopolymerization of methacrylic esters with vinyl benzoates. Appl. Phys. Lett. 29(9), 559–561 (1976)CrossRefGoogle Scholar
  139. Y. Ohtsuka, M. Yoshida, Method of manufacturing a transparent light conducting element of synthetic resin having refractive index gradient. U.S. Patent 3,955,015, issued 4 May 1976Google Scholar
  140. T. Oka, H. Fujiwara, K. Takashima, T. Usami, Y. Tsutaka, Development of fiber optic radiation monitor using plastic scintillation fibers. J. Nucl. Sci. Technol. 35(12), 857–864 (1998)CrossRefGoogle Scholar
  141. Y. Okabe, S. Yashiro, T. Kosaka, N. Takeda, Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors. Smart Mater. Struct. 9, 832–838 (2000)CrossRefGoogle Scholar
  142. A. Othonos, K. Kalli, Fiber Bragg Gratings, Fundamentals and applications in Telecommunications and Sensing, Artech House, 1999Google Scholar
  143. G.C. Papanicolaou, A.M. Blanas, A.V. Pournaras, C.D. Stavropoulos, Impact damage and residual strength of FRP composites. Key Eng. Mater. 141–143, 127–148 (1998)Google Scholar
  144. C.W. Park, Fabrication techniques for plastic optical fibres, in Polymer Optical Fibers, ed. by H. S. Nalwa (Ed), (American Scientific Publishers, Los Angeles 2004)Google Scholar
  145. C.W. Park, B.S. Lee, J.K. Walker, W.Y. Choi, A new processing method for the fabrication of cylindrical objects with radially varying properties. Ind. Eng. Chem. Res. 39(1), 79–83 (2000a)CrossRefGoogle Scholar
  146. J.W. Park, C.Y. Ryu, H.K. Kang, C.S. Hong, Detection of buckling and crack growth in the delaminated composites using fiber optic sensor. J. Compos. Mater. 34, 1602–1623 (2000b)CrossRefGoogle Scholar
  147. G.D. Peng, Polymer optical fibre systems and devices, in A Book Chapter in Science and Technology-Advancing into the New Millennium, ed. by J. Sun, L. Sun, J. Jin, A. Yu, Q. Zhang, P. Zhang (People’s Education Press, Beijing, 1999), pp. 337–351 and 573–578, ISBN 710-7-13208-3Google Scholar
  148. G.D. Peng, Prospects of POF and Grating for Sensing, invited paper, presented at the 15th International Conference of Optical Fiber Sensors, Portland, 6–10 May 2002aGoogle Scholar
  149. G.D. Peng, Polymer Optical Fibre Bragg Gratings and Their Sensor Applications, invited paper, the Symposium on Optoelectronic Materials and Technology, in the Information Age (A-3) at the 104th Annual meeting of the American Ceramic Society, St. Louis, 28 April–1 May, 2002bGoogle Scholar
  150. G.D. Peng, P.L. Chu, Polymer optical fiber photosensitivities and highly tunable fiber gratings. Fiber Integr. Opt. 19(4), 277–293 (2000)CrossRefGoogle Scholar
  151. Peng G. D. and Chu P. L., Chapter 9: Optical fibre hydrophone systems, in Fiber Optic Sensors, ed. by F. Yu, S. Yin (Eds), (Marcel Dekker, Inc., New York, 2001), pp. 417–447Google Scholar
  152. G.D. Peng, P.L. Chu, Polymer optical fiber sensing. Proc. SPIE 4929, 303–311 (2002)CrossRefGoogle Scholar
  153. G. D. Peng and P. L. Chu, Chapter 4: Polymer optical fiber gratings, in Polymer Optical Fibers, ed. by H. S. Nalwa (Ed), (American Scientific Publishers, CA, USA, 2004), pp. 51–71. ISBN: 1-5888-3012-8Google Scholar
  154. G.D. Peng, A.D. Li, Laser activity in polymer optical fibres doped with new organic materials, Proceedings of Progress in Electromagnetics Research Symposium, PIERS'2001, Osaka, 497, July 2001Google Scholar
  155. G.D. Peng, A. Latif, P.K. Chu, R.A. Chaplin, Polymeric guest–host system for non-linear optical fiber. Proceedings, in IEEE Non-Linear Optics, Material, Fundamentals and Applications, (1994), pp. 86–88Google Scholar
  156. G.D. Peng, P.L. Chu, L. Xia, R.A. Chaplin, Fabrication and characterisation of polymer optical fibres. J. IREEA 15(3), 289–296 (1995)Google Scholar
  157. G.D. Peng, P.L. Chu, Z. Xiong, T. Whitbread, R.P. Chaplin, Dye-doped polymer optical fibre for broadband optical amplification. IEEE/OSA J. Lightwave Technol. 14(10), 2215–2223 (1996a)CrossRefGoogle Scholar
  158. G.D. Peng, P.L. Chu, Z. Xiong, T. Whitbread, R.P. Chaplin, Broadband tunable optical amplification in Rhodamine B-doped step-index polymer optical fibre. Opt. Commun. 129, 353–357 (1996b)CrossRefGoogle Scholar
  159. G.D. Peng, Z. Xiong, P.L. Chu, Fluorescence decay and recovery in organic dye doped polymer optical fibres. J. Lightwave Technol. 16, 2365–2371 (1998)CrossRefGoogle Scholar
  160. G.D. Peng, Z. Xiong, P.L. Chu, Photosensitivity and grating in dye-doped polymer optical fibres. Opt. Fiber Technol. 5, 242–251 (1999)CrossRefGoogle Scholar
  161. G.D. Peng, P. Ji, P.L. Chu, Electro-optic and polarisation effects in polymer optical fibres, Proceedings of Progress in Electromagnetics Research Symposium, PIERS’2001, Osaka, p. 498, July 2001aGoogle Scholar
  162. G.D. Peng, P. Ji, P.L. Chu, Electro-optic polymer optical fibers and their device applications. Proc. SPIE 4459, 101–117 (2001b)CrossRefGoogle Scholar
  163. G.D. Peng, H.Y. Liu, P.L. Chu, Dynamics and threshold behaviour in polymer fibre Bragg grating creation. Proc SPIE 4803, 164–178 (2002)CrossRefGoogle Scholar
  164. T. Pereira, S. Rusinkiewicz, W. Matusik, Computational Light Routing: 3D Printed Optical Fibers for Sensing and Display. ACM Trans. Graph. (TOG) TOG Homepage Arch. 33(3), 24 (2014)Google Scholar
  165. K. Peters, Polymer optical fiber sensors—a review. Smart Mater. Struct. 20(1), 013002 (2010)CrossRefGoogle Scholar
  166. R. Philip-Chandy, R. Morgan, P.J. Scully, The measurement, instrumentation and sensors handbook, in Drag Force Flowmeters Section 5,3,10, (CRC Press LLC, Boca Raton, 1999)Google Scholar
  167. R. Philip-Chandy, P.J. Scully, P. Eldridge, H.J. Kadim, M.G. Grapin, M.G. Jonca, M.G. D’Ambrosio, F. Colin, Optical fiber sensor for biofilm measurement using intensity modulation and image analysis. IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000a)CrossRefGoogle Scholar
  168. R. Philip-Chandy, P.J. Scully, R. Morgan, Design, development and performance characteristics of a fibre optic drag-force flow sensor. Meas. Sci. Technol. 11(3), N31–N35 (2000b)CrossRefGoogle Scholar
  169. P. Polishuk, Plastic optical fibers branch out. IEEE Commun. Mag. 44(9), 140–148 (2006)CrossRefGoogle Scholar
  170. A. Polley, K. Balemarthy, S.E. Ralph, Mode coupling: why POF supports 40 Gbps. Conference on Lasers and Electro-Optics, p. CWM5. Optical Society of America, 2007Google Scholar
  171. A. Pospori, C.A.F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, D.J. Webb, Annealing and etching effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors. 25th International Conference on Plastic Optical Fibres, pp. 260–263. University of Aston in Birmingham (2017)Google Scholar
  172. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)CrossRefGoogle Scholar
  173. Y.J. Rao, In-fiber Bragg grating sensor. Meas. Sci. Technol. 8, 355–375 (1997)CrossRefGoogle Scholar
  174. A. Raza, A.T. Augousti, Optical measurement of respiration rates. Proceedings of the Seventh Conference on Sensors and their Applications, Dublin, pp. 325–330 (1995)Google Scholar
  175. P.P.L. Regtien, Solid state humidity sensors. Sensors Actuators 2(85) (1982)CrossRefGoogle Scholar
  176. R.M. Ribeiro, J.L.P. Canedo, M.M. Werneck, L.R. Kawase, An evanescent-coupling plastic optical fibre refractometer and absorptionmeter based on surface light scattering. Sensors Actuators A Phys. 101(1–2), 69–76 (2002)CrossRefGoogle Scholar
  177. D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, D.J. Webb, Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core. Opt. Lett. 38(19), 3769–3772 (2013)CrossRefGoogle Scholar
  178. H. Sawada, A. Tanaka, N. Wakatsuki, Plastic optical fiber doped with organic fluorescent materials. Fujitsu Sci. Tech. J. 25(2), 163–116 (1989)Google Scholar
  179. H.M. Schleinitz, Proceedings of the International Wire and Cable Symposium, p. 352, (1977)Google Scholar
  180. N.F. Schmitt, UV photo-induced grating structures on polymer optical fibres. PhD thesis, Liverpool John Moores University, 1999Google Scholar
  181. P.J. Scully, R. Holmes, G.R. Jones, Optical fibre-based goniometer for sensing patient position and movement within a magnetic resonance scanner using chromatic modulation. J. Med. Eng. Technol. 17, 1–8 (1993)CrossRefGoogle Scholar
  182. P.J. Scully et al., UV laser photo-induced refractive index changes in poly-methyl-meth-acrylate and plastic optical fibres for application as sensors and devices. Proc. SPIE Int. Soc. Opt. Eng. 4185, 854–857 (2000)Google Scholar
  183. B. Selm, E.A. Gürel, M. Rothmaier, R.M. Rossi, L.J. Scherer, Polymeric optical fiber fabrics for illumination and sensorial applications in textiles. J. Intell. Mater. Syst. Struct. 21(11), 1061–1071 (2010)CrossRefGoogle Scholar
  184. M. Shadaram, J. Martinez, F. Garcia, D. Tavares, Sensing ammonia with ferrocene-based polymer coated tapered optical fibers. Fiber Integr. Opt. 16(1), 115–122 (1997)CrossRefGoogle Scholar
  185. M. Shigeishi, S. Colombo, K.J. Broughton, H. Rutledge, A.J. Batchelor, M.C. Forde, Acoustic emission to assess and monitor the integrity of bridges. Construction Building Mater 15, 35–49 (2001)CrossRefGoogle Scholar
  186. I.-S. Sohn, C.-W. Park, Diffusion-assisted coextrusion process for the fabrication of graded-index plastic optical fibers. Ind. Eng. Chem. Res. 40, 3740 (2001)CrossRefGoogle Scholar
  187. I.-S. Sohn, C.-W. Park, Preparation of graded-index plastic optical fibers by the diffusion-assisted coextrusion process. Ind. Eng. Chem. Res. 41, 2418 (2002)CrossRefGoogle Scholar
  188. U. Steiger, Sensor properties and applications of POF. 7th International Plastic Optical Fibres Conference, Berlin, pp. 171–177, 1998Google Scholar
  189. T. Sukegawa, M. Hirano, M. Tomatsu, T. Otsuki, H. Shinohara, Y. Hara, A. Tanaka, New polymer optical fiber for high temperature use, in 3rd International Conference on Plastic Optical Fibres and Applications (POF ’94), (The European Institute of Communications and Networks, Yokohama, 1994), p. 92Google Scholar
  190. H. Suzuki, Y. Yamada, K. Matsuo, T. Sowa, K. Yamashita, K. Kurosawa, K. Tanaka, Development of fault location system for GIS using fluorescent plastic optical fiber. Trans. Inst. Electr. Eng. Jpn Part B 119-B(7), 840–846 (1999)Google Scholar
  191. A. Suzuki et al., K2K collaboration. Nucl. Instr. Meth. A 453, 165 (2000)CrossRefGoogle Scholar
  192. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, Polymer optical fiber amplifier. Appl. Phys. Lett. 63(7), 883–884 (1993)CrossRefGoogle Scholar
  193. A. Tagaya, Y. Koike, E. Nikei, S. Teramoto, K. Fujii, T. Yamamoto, K. Sasaki, Basic performance of an organic dye-doped polymer optical fiber amplifier. Appl. Opt. 34, 988–992 (1995a)CrossRefGoogle Scholar
  194. T.S. Tagaya, T. Yamamoto, K. Fujii, E. Nihei, K. Sasaki, Y. Koike, Theoretical and experimental investigation of Rhodamine B -doped polymer optical fibre amplifiers. IEEE J. Quantum Electron. 31(12) (1995b)CrossRefGoogle Scholar
  195. N. Takeda, Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors. Int. J. Fatigue 24(2–4), 281–289 (2002)CrossRefGoogle Scholar
  196. N. Takeda, T. Kosaka, T. Ichiyama, Detection of transverse cracks by embedded plastic optical fiber in FRP laminates. Proc. SPIE 3670, 248–255 (1999)CrossRefGoogle Scholar
  197. Y. Takezawa, Y. Itoh, M. Shimodera, H. Miya, Development of a portable diagnostic apparatus for coil insulators in low-voltage induction motors. IEEE Trans. Dielectr. Electr. Insul. 5(2), 290–295 (1998)CrossRefGoogle Scholar
  198. W. Talataisong, R. Ismaeel, T.H.R. Marques, S.A. Mousavi, M. Beresna, M.A. Gouveia, S.R. Sandoghchi, T. Lee, C.M.B. Cordeiro, G. Brambilla, Mid-IR hollow-core microstructured fiber drawn from a 3D printed PETG preform. Sci. Rep. 8(1), 8113 (2018)CrossRefGoogle Scholar
  199. A. Tanaka, H. Sawada, T. Takoshima, N. Wakatsuki, New plastic optical fiber using polycarbonate core and fluorescence-doped fiber for high temperature use. Fiber Integr. Opt. 7(2), 139–158 (1988)CrossRefGoogle Scholar
  200. N. Tanio, Y. Koike, What is the most transparent polymer? J. Polym 32, 43–50 (2000)CrossRefGoogle Scholar
  201. J.C. Thevenin, L.R. Allemand, J. Calvet, J.C. Cavan, B. Chiron, F. Gauthier, Sintillating and fluorescent plastic optical fibers for sensors applications. Proc. SPIE 514, 133–141 (1984)CrossRefGoogle Scholar
  202. P.M. Toal, L.J. Holmes, R.X. Rodriguez, E.D. Wetzel, Microstructured monofilament via thermal drawing of additively manufactured preforms. Addit. Manuf. 16, 12–23 (2017)CrossRefGoogle Scholar
  203. M. Towrie et al., UV laser photo-induced refractive index changes in poly-methyl-meth-acrylate and plastic optical fibres for application as sensors and devices. Proc. SPIE 4185, 854–857 (2000)Google Scholar
  204. K. Uchiyama, G. Vishnoi, M. Moriswa, S. Muto, Plastic optical fibre gasoline leakage sensor. Proc. POF Conf. ’97, Hawaii 22–25, 140–141 (1997)Google Scholar
  205. I. Ullah, S.Y. Shin, Development of optical fiber-based daylighting system with uniform illumination. J. Opt. Soc. Korea 16(3), 247–255 (2012)CrossRefGoogle Scholar
  206. S.H.D. Valdes, C. Soutis, Delamination detection in composite laminates from variations of their modal characteristics. J. Sound Vib. 228, 1–9 (1999)CrossRefGoogle Scholar
  207. F.G.H. Van Duijnhoven, C.W.M. Bastiaansen, Monomers and polymers in a centrifugal field, a new method to produce refractive-index gradients in polymers. Appl. Opt. 38, 1008 (1999)CrossRefGoogle Scholar
  208. M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, et al., Recent progress in microstructured polymer optical fibre fabrication and characterisation. Opt. Fiber Technol. 9(4), 199–209 (2003)CrossRefGoogle Scholar
  209. C. Vazquez, J. Garcinuno, J.M.S. Pena, A.B. Gonzalo, Multi-sensor system for level measurements with optical fibres. IECON Proc. Ind. Electron. Conf 4, 2657–2662 (2002)Google Scholar
  210. G. Vishnoi, M. Morisawa, T. Mizukami, K. Uchiyama, S. Muto, Studies on the improvement of sensitivity and stability of fiber optic oxygen sensing based on cladding fluorescence. Proc. SPIE 3105, 114–121 (1997)CrossRefGoogle Scholar
  211. S.R. Waite, Use of embedded optical fibre for early fatigue damage detection in composite materials. Composites 21, 148–154 (1990)CrossRefGoogle Scholar
  212. D.J. Webb, Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 26(9), 092004 (2015)CrossRefGoogle Scholar
  213. D.J. Welker, J. Tostenrude, D.W. Garvey, B.K. Canfield, M.G. Kuzyk, Fabrication and characterization of single-mode electro-optic polymer optical fiber. Opt. Lett. 23(23), 1826–1828 (1998)CrossRefGoogle Scholar
  214. M. Whelan, Damage detection in vibrating composite panels using embedded fibre optic sensors and pulsed-DPSI key. Eng. Mater. 167(/168), 122–131 (1999)Google Scholar
  215. W.R. White, L.L. Blyer, R. Ratnagiri, M. Park, J.J. Refi, Perfluorinated POF, out of the lab, into the real world. Proceedings of the 12th International Conference on Polymer Optical Fiber (POF’2003), Seattle, pp. 16–19, Sept 2003Google Scholar
  216. K. Willis, E. Brockmeyer, S. Hudson, I. Poupyrev, Printed optics: 3D printing of embedded optical elements for interactive devices, UIST ’12. Proceedings of the 25th annual ACM symposium on User Interface Software and Technology, pp. 589–598, 2012Google Scholar
  217. G. Woyessa, A. Fasano, C. Markos, Microstructured polymer optical fiber gratings and sensors, in Handbook of Optical Fibers, ed. by G. D. Peng (Ed), (Springer, Singapore, 2018)Google Scholar
  218. Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, Highly tunable Bragg gratings in single mode polymer optical fibers. IEEE Photon. Tech. Lett. 11(3), 352–354 (1999a)CrossRefGoogle Scholar
  219. Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, 73 nm wavelength tuning in polymer optical fiber Bragg gratings. The 24th Australian Conference on Optical Fibre Technology (ACOFT’99), Sydney, pp. 135–138, July 1999bGoogle Scholar
  220. S. Yamakawa, Plastic optical fiber chemical sensor with pencil-shaped distal tip fluorescence probe. Proceedings POF ’97 Conference, Kauai, pp. 109–110, 1997Google Scholar
  221. A. Yeung, K.S. Chiang, V. Rastogi, P.L. Chu, G.D. Peng, Experimental demonstration of single-mode operation of large-core segmented cladding fiber. Optical Fiber Communication Conference in Los Angeles. 2004Google Scholar
  222. W.J. Yoo, S.H. Shin, D. Jeon, S. Hong, S.G. Kim, H.I. Sim, K.W. Jang, S. Cho, B. Lee, Simultaneous measurements of pure scintillation and Cerenkov signals in an integrated fiber-optic dosimeter for electron beam therapy dosimetry. Opt. Express 21, 27770–27779 (2013)CrossRefGoogle Scholar
  223. W.J. Yoo, S.H. Shin, D.E. Lee, K.W. Jang, S. Cho, B. Lee, Development of a small-sized, flexible, and insertable fiber-optic radiation sensor for gamma-ray spectroscopy. Sensors (Basel, Switzerland) 15(9), 21265–21279 (2015)CrossRefGoogle Scholar
  224. W.J. Yoo, Sang Hun Shin, Dayeong Jeon, Seunghan Hong, Seon Geun Kim, Hyeok In Sim, Kyoung Won Jang, Seunghyun Cho, and Bongsoo Lee, Simultaneous measurements of pure scintillation and Cerenkov signals in an integrated fiber-optic dosimeter for electron beam therapy dosimetry, Optics Express 21(23), 27770–27779 (2013)CrossRefGoogle Scholar
  225. J.M. Yu, X.M. Tao, H.Y. Tam, Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings. Opt. Lett. 29(2), 156–158 (2004)CrossRefGoogle Scholar
  226. J. Zagari, A. Argyros, N.A. Issa, et al., Opt. Lett. 29(8), 818–820 (2004). A. Argyros, M.A. van Eijkelenborg, M.C.J. Large et al., Opt. Lett. 31(2), 172–174 (2006)CrossRefGoogle Scholar
  227. F.H. Zhang, P.J. Scully, E. Lewis, A novel optical fibre sensor for turbidity measurement. 4th Divisional conference, Appl. Opt. Optoelectron. 370–373 (1996)Google Scholar
  228. F.H. Zhang, E. Lewis, P.J. Scully, Optical fibre sensor for particle concentration measurement in water systems based on inter-fibre light coupling between polymer optical fibres. Trans. Inst. Meas. Control. 22(5), 413–430 (2000)CrossRefGoogle Scholar
  229. Y. Zhang, K. Li, L. Wang, et al., Opt. Express 14(12), 5541–5547 (2006)CrossRefGoogle Scholar
  230. W. Zhang, D.J. Webb, G.-D. Peng, Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors. Opt. Lett. 40(17), 4046–4049 (2015). Scholar
  231. Q. Zhou, M.B. Tabacco, K.W. Rosenblum, Development of chemical sensors using plastic optical fiber. Proc. SPIE Int. Soc. Opt. Eng. 1592, 108–113 (1991)Google Scholar
  232. O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Handbook (Springer, 2008)Google Scholar
  233. M.G. Zubel, A. Fasano, G. Woyessa, K. Sugden, H.K. Rasmussen, O. Bang. 3D-printed PMMA Preform for Hollow-core POF Drawing. The 25th international conference on plastic optical fibers 2016, 2016Google Scholar
  234. J. Zubia, O. Aresti, J. Arrue, M. Lopez-Amo, Barrier sensor based on plastic optical fiber to determine the wind speed at a wind generator. IEEE J. Sel. Top. Quantum Electron. 6(5), 773–779 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.HFC Assurance, Operate and Maintain NetworkNBNMelbourneAustralia
  2. 2.Photonics and Optical Communications, School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia

Section editors and affiliations

  • Perry Shum
    • 1
  • Zhilin Xu
  1. 1.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations