Advertisement

Optical Fiber Sensors in Ionizing Radiation Environments

  • Dan SporeaEmail author
Reference work entry

Abstract

The present chapter addresses the use of optical fiber sensors (OFSs) in ionizing radiation environments. In this context, OFS research reflects (i) either the reliability of such sensors under radiation exposure and their capability to operate within prescribed limits (sensitivity, dynamic range, S/N, reproducibility, linearity, etc.) in order to act as transducers for specific quantities (temperature, humidity, strain, etc.) (ii) or, if they are subject to some degradation, the benefit of the irradiation-induced changes for developing radiation dosimeters or radiation monitors.

OFSs are classified in extrinsic and intrinsic sensors, according to the role played by the optical fiber in the system. In the first case, the optical fiber acts as a light guide of the radiation-generated optical signal, while in the second situation, the fiber material constitutes the detecting medium, where light is produced under radiation exposure. Depending on the type of intrinsic sensor considered, some devices are structured inside the fiber and form the sensor. Intrinsic OFSs are further divided into discrete, quasi-distributed, and distributed sensing configurations. Discussion on OFSs in this chapter covers different fiber structures and materials, as they are reported in literature. Basic operating principles of these sensors are introduced to the reader excepting the cases when such concepts are detailed in other chapters. For reader’s convenience, an extended list of references was included in order to set the scene for a better understanding of the benefits and limits of employing OFSs in such circumstances. In most of the presented cases, applications of optical fiber sensors in radiation dosimetry and/or radiation monitoring are mentioned.

The chapter targeted audience is formed by university students, technical personnel, and experts in specific fields (medicine, nuclear and space industries, operators of ionizing radiation sources) interested in the use of optical fibers for remote monitoring and control and in radiation reach environments, looking for the benefit associated with such sensors: immunity to electromagnetic fields, lack of fire risks, small size, low mass, and capability to handle multiparameter, multiplexed, or distributed measurements.

Keywords

Distributed radiation monitoring Extrinsic and intrinsic sensors Ionizing radiation Optical fiber gratings Optical fiber sensor Radiation effects Radiation dosimetry 

References

  1. M.S. Akselrod, L. Better-Jensen, S.W.S. McKeever, Radiat. Meas. 41, S78 (2007)CrossRefGoogle Scholar
  2. D. Alasia et al., Meas. Sci. Technol. 17, 1091 (2006)CrossRefGoogle Scholar
  3. A. Alawiah et al., Proc. SPIE 8775, 87750S (2013)CrossRefGoogle Scholar
  4. C.E. Andersen, in AIP Conference Proceedings, ed. by A. Rosenfeld, T. Kron, F. d’Errico, M. Moscovitch (American Institute of Physics, College Park, 2011), p. 1345, 100Google Scholar
  5. C.E. Andersen et al., Med. Phys. 36, 708 (2009)CrossRefGoogle Scholar
  6. C.E. Andersen et al., Radiat. Meas. 46, 1090 (2011)CrossRefGoogle Scholar
  7. A.I. de Andrés, Ó. Esteban, M. Embid, Opt. Laser Technol. 93, 201 (2017)CrossRefGoogle Scholar
  8. S. Avino et al., Appl. Phys. Lett. 103, 184102 (2013)CrossRefGoogle Scholar
  9. M.C. Aznar et al., Phys. Med. Biol. 49, 1655 (2004)CrossRefGoogle Scholar
  10. L. Beaulieu, S. Beddar, Phys. Med. Biol. 61, R305 (2016)CrossRefGoogle Scholar
  11. L. Beaulieu et al., J. Phys. Conf. Ser. 444, 012013 (2013)CrossRefGoogle Scholar
  12. A.R. Beierholm et al., Radiat. Meas. 43, 898 (2008)CrossRefGoogle Scholar
  13. M. Benabdesselam, F. Mady, S. Girard, J. Non-Cryst. Solids 360, 9 (2013)CrossRefGoogle Scholar
  14. D. Benoit et al., IEEE T. Nucl. Sci. 55, 2154 (2008)CrossRefGoogle Scholar
  15. F. Berghmans et al., in Optical Waveguide Sensing and Imaging, ed. by W.J. Bock, I. Gannot, S. Tanev (Springer, Dordrecht, 2008), p. 127Google Scholar
  16. B.C. Bhatt, Radiat. Prot. Environ. 34, 6 (2011)Google Scholar
  17. P. Borgermans et al., in Proceedings of SPIE 4204, Fiber Optic Sensor Technology II, ed. by B. Culshaw, J.A. Harrington, M.A. Marcus, M. Saad (SPIE, Bellingham, 2001), p. 151Google Scholar
  18. D.A. Bradley et al., Radiat. Phys. Chem. 104, 3 (2014)CrossRefGoogle Scholar
  19. D.A. Bradley et al., Appl. Radiat. Isot. 100, 43 (2015)CrossRefGoogle Scholar
  20. B. Brichard et al., Meas. Sci. Technol. 18, 3257 (2007)CrossRefGoogle Scholar
  21. D. Broggio et al., Nucl. Instr. Met. B 254, 3 (2007)CrossRefGoogle Scholar
  22. E. Bulur, A. Yeltik, Radiat. Meas. 45, 29 (2010)CrossRefGoogle Scholar
  23. S. Buranurak, C.E. Andersen, Radiat. Meas. 93, 46 (2016)CrossRefGoogle Scholar
  24. S. Buranurak et al., Radiat. Meas. 56, 307 (2013)CrossRefGoogle Scholar
  25. O. Butov et al., J. Appl. Phys. 118, 074502 (2015)CrossRefGoogle Scholar
  26. C. Cangialosi et al., IEEE T. Nucl. Sci. 61, 3315 (2014)CrossRefGoogle Scholar
  27. C. Cangialosi et al., J. Lightwave Technol. 33, 2432 (2015)CrossRefGoogle Scholar
  28. I. Chaikovska, N. Delerue, A. Variola, in Proc. IBIC 2014-3rd International Beam Instrumentation Conference, ed. by D. Button, M. Montes-Loera, I. Martin, I. Costa, V.R.W. Schaaa, Paper TUPD23 (Stanford University, Stanford, 2014), p. 463Google Scholar
  29. S. Chaubey et al., Sadhana 32, 513 (2007)CrossRefGoogle Scholar
  30. N. Chiodini, A. Vedda, I. Veronese, Adv. Opt. 2014, 9 pp (2017). https://doi.org/10.1155/2014/974584. Article ID 974584CrossRefGoogle Scholar
  31. A. Darafsheh et al., in Proc. SPIE 10058, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII, ed. by I. Gannot (SPIE, Bellingham, 2017), p. 100580BGoogle Scholar
  32. D. Di Francesca, Roles of dopants, interstitial O2 and temperature in the effects of irradiation on silica-based optical fibers, Doctoral dissertation, Saint Etienne (2015)Google Scholar
  33. D. Di Francesca et al., IEEE T. Nucl. Sci. 61, 3302 (2014)CrossRefGoogle Scholar
  34. C. Dotzler et al., Appl. Phys. Lett. 91, 121910 (2007)CrossRefGoogle Scholar
  35. P. Duguay-Drouin, Caractérisation et optimisation d’un détecteur à scintillation à 2 points, PhD Thesis (2016), http://theses.ulaval.ca/archimede/fichiers/32457/32457.pdf
  36. F. Esposito et al., Sci. Rep. 7, 43389 (2017). https://doi.org/10.1038/srep43389
  37. A. Faustov et al., IEEE T. Nucl. Sci. 59, 1180 (2012)CrossRefGoogle Scholar
  38. A. Faustov et al., Results Phys. 6, 86 (2016)CrossRefGoogle Scholar
  39. A.F. Fernandez et al., IEEE T. Nucl. Sci. 52, 2689 (2005)CrossRefGoogle Scholar
  40. A.F. Fernandez et al., IEEE T. Nucl. Sci. 53, 1607 (2006)CrossRefGoogle Scholar
  41. E.J. Friebele, C.G. Askins, M.E. Gingerich, Appl. Opt. 23, 4202 (1984)CrossRefGoogle Scholar
  42. R.S. Gaza, W.S. McKeever, M.S. Akselrod, Med. Phys. 32, 1094 (2005)CrossRefGoogle Scholar
  43. S. Ghosh et al., Appl. Opt. 50, E80 (2011)CrossRefGoogle Scholar
  44. S. Girard, C. Marcandella, IEEE T. Nucl. Sci. 57, 2049 (2010)CrossRefGoogle Scholar
  45. S. Girard et al., J. Non-Cryst. Solids 357, 1871 (2011)CrossRefGoogle Scholar
  46. S. Girard et al., IEEE T. Nucl. Sci. 60, 2015 (2013a)CrossRefGoogle Scholar
  47. S. Girard et al., IEEE T. Nucl. Sci. 60, 4305 (2013b)CrossRefGoogle Scholar
  48. S. Girard et al., IEEE T. Nucl. Sci. 64, 567 (2017)CrossRefGoogle Scholar
  49. A.K. Glaser et al., Phys. Med. Biol. 59, 3789 (2014)CrossRefGoogle Scholar
  50. D. Grobnic et al., in Proc. SPIE 7316. Defense, Security, and Sensing, ed. by E. Udd, H.H. Du, A. Wang (SPIE, Bellingham, 2009), p. 73160CGoogle Scholar
  51. A. Gusarov, IEEE T. Nucl. Sci. 57, 2044 (2010)CrossRefGoogle Scholar
  52. A. Gusarov, S. Hoeffgen, IEEE T. Nucl. Sci. 60, 2037 (2013)CrossRefGoogle Scholar
  53. A. Gusarov et al., Nucl. Instr. Met. B 187, 79 (2002)CrossRefGoogle Scholar
  54. A. Gusarov, B. Brichard, D.N. Nikogosyan, IEEE T. Nucl. Sci. 57, 2024 (2010)CrossRefGoogle Scholar
  55. T.A. Hamdalla, S.S. Nafee, Opt. Laser Technol. 74, 167 (2015)CrossRefGoogle Scholar
  56. H. Henschel et al., Fiber optic radiation sensing systems for TESLA. TESLA Report 26 (2000)Google Scholar
  57. H. Henschel et al., in 9th European Conference on Radiation and Its Effects on Components and Systems, 2007. RADECS 2007, ed. by S. Girard, N. Richard (IEEE, New York, 2007), p. 1Google Scholar
  58. H. Henschel et al., IEEE T. Nucl. Sci. 57, 2915 (2010)CrossRefGoogle Scholar
  59. M. Ishikawa et al., J. Radiat. Res. 56, 372 (2015)CrossRefGoogle Scholar
  60. K.W. Jang et al., J. Korean Phys. Soc. 56, 1777 (2010)CrossRefGoogle Scholar
  61. K.W. Jang et al., Nucl. Instrum. Met. A 652, 841 (2011)CrossRefGoogle Scholar
  62. K.W. Jang et al., Opt. Express 20, 13907 (2012)CrossRefGoogle Scholar
  63. K.W. Jang et al., Opt. Express 21, 14573 (2013)CrossRefGoogle Scholar
  64. K.W. Jang et al., Sensors 14, 7013 (2014)CrossRefGoogle Scholar
  65. J. Jing et al., Chin. Phys. B 21, 094220 (2012)CrossRefGoogle Scholar
  66. J. Jing, L. Song, S. Ning-Fang, Chin. Phys. B 23, 014206 (2013)Google Scholar
  67. S. Kher et al., IEEE Photon. Technol. Lett. 24, 742 (2012)CrossRefGoogle Scholar
  68. D. Klein et al., Radiat. Meas. 47, 921 (2012)CrossRefGoogle Scholar
  69. M. Kovačević et al., Opt. Laser Technol. 47, 148 (2013)CrossRefGoogle Scholar
  70. K. Krebber, H. Henschel, U. Weinand, Meas. Sci. Technol. 17, 1095 (2006)CrossRefGoogle Scholar
  71. S.H. Law et al., in Biomedical Optics 2004 (SPIE, Bellingham, 2004), p. 105Google Scholar
  72. B. Lee et al., IEEE T. Nucl. Sci. 57, 1496 (2010)CrossRefGoogle Scholar
  73. B. Lee et al., Sensors 15, 11012 (2015)CrossRefGoogle Scholar
  74. Y.-P. Liu, Chin. Phys. C 32, 381 (2008)CrossRefGoogle Scholar
  75. P.Z.Y. Liu et al., Phys. Med. Biol. 56, 5805 (2011)CrossRefGoogle Scholar
  76. D. McCarthy et al., IEEE Sensors 2011, 121 (2011)Google Scholar
  77. S.W.S. McKeever, Nucl. Instrum. Met. B 184, 29 (2001)CrossRefGoogle Scholar
  78. S.W.S. McKeever et al., Radiat. Prot. Dosim. 109, 269 (2004)CrossRefGoogle Scholar
  79. D.R. Mishra et al., Nucl. Instrum. Met. B 342, 116 (2015)CrossRefGoogle Scholar
  80. E. Mones et al., Radiat. Meas. 43, 888 (2008)CrossRefGoogle Scholar
  81. A. Morana et al., Opt. Lett. 39, 5313 (2014)CrossRefGoogle Scholar
  82. A. Morana et al., J. Lightwave Technol. 33, 2646 (2015a)CrossRefGoogle Scholar
  83. A. Morana et al., Opt. Express 23, 8659 (2015b)CrossRefGoogle Scholar
  84. R. Naka et al., IEEE T. Nucl. Sci. 48, 2348 (2001)CrossRefGoogle Scholar
  85. S. O’Keeffe et al., IEEE J. Sel. Top. Quantum Electr. 22, 35 (2016)CrossRefGoogle Scholar
  86. S. O’Keeffe et al., 13th Intl. Plastic Optical Fibres Conference (2004), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.3780&rep=rep1&type=pdf
  87. X. Phéron et al., Opt. Express 20, 26978 (2012)CrossRefGoogle Scholar
  88. I. Planes et al., Sensors 2017(17), 396 (2017)CrossRefGoogle Scholar
  89. A.S. Pradhan, J.I. Lee, J.L. Kim, J. Med. Phys. 33, 85 (2008)CrossRefGoogle Scholar
  90. Z. Qin et al., Biomed. Opt. Express 7, 4919 (2016)CrossRefGoogle Scholar
  91. A.T. Rahman et al., Appl. Radiat. Isot. 70, 1436 (2012)CrossRefGoogle Scholar
  92. G. Ranchoux et al., Radiat. Prot. Dosim. 100, 255 (2002)CrossRefGoogle Scholar
  93. N.S. Rawat et al., Radiat. Meas. 71, 212 (2014)CrossRefGoogle Scholar
  94. G. Rego et al., Appl. Opt. 44, 6258 (2005)CrossRefGoogle Scholar
  95. F. Rêgo, L. Peralta, M.D.C. Abreu, arXiv preprint arXiv:1109.6545 (2011)Google Scholar
  96. S. Rizzolo et al., IEEE T. Nucl. Sci. 62, 2988 (2015a)CrossRefGoogle Scholar
  97. S. Rizzolo et al., Opt. Express 23, 18997 (2015b)CrossRefGoogle Scholar
  98. S. Rizzolo et al., IEEE T. Nucl. Sci. 63, 2038 (2016)CrossRefGoogle Scholar
  99. S. Rizzolo et al., IEEE T. Nucl. Sci. 64, 61 (2017)CrossRefGoogle Scholar
  100. M.A. Saeed et al., Radiat. Phys. Chem. 91, 98 (2013)CrossRefGoogle Scholar
  101. A.M.C. Santos, M. Mohammadi, V. S. Afshar, Opt. Express 22, 4559 (2014)CrossRefGoogle Scholar
  102. G. Schmidt et al., in Proceedings of EPAC, ed. by J.-L. Laclare (CERN, Switzerland, 2002), p. 1969Google Scholar
  103. T. Shikama et al., Meas. Sci. Technol. 17, 1103 (2006)CrossRefGoogle Scholar
  104. D. Sporea, A. Sporea, Phys. Status Solidi C 4, 1356 (2007)CrossRefGoogle Scholar
  105. D. Sporea et al., in Selected Topics on Optical Fiber Technology, ed. by M. Yasin, S.W. Harun, H. Arof (InTech, 2012a), p. 607Google Scholar
  106. D. Sporea, A. Sporea, C. Oproiu, J. Nucl. Mater. 423, 142 (2012b)CrossRefGoogle Scholar
  107. D. Sporea et al., Sensors 14, 3445 (2014a)CrossRefGoogle Scholar
  108. D. Sporea et al., Sens. Actuat. A-Phys. 213, 79 (2014b)CrossRefGoogle Scholar
  109. D. Sporea et al., Opt. Express 22, 31473 (2014c)CrossRefGoogle Scholar
  110. D. Sporea et al., IEEE Photon. J. 6, 1 (2014d)CrossRefGoogle Scholar
  111. D. Sporea et al., Sensors 14, 15786 (2014e)CrossRefGoogle Scholar
  112. D. Sporea et al., Sensor Actuators A-Phys. 233, 295 (2015)CrossRefGoogle Scholar
  113. D. Sporea, A. Sporea, C. Oproiu, in Proc. International Conference on Advanced Materials for Science and Engineering (ICAMSE), ed. by T.-H. Meen, S.D. Prior, A. D. Kin-Tak Lam (IEEE, New York, 2016a), p. 691Google Scholar
  114. D. Sporea et al., in Proc. SPIE 9886, Micro-Structured and Specialty Optical Fibres IV, ed. by K. Kalli, A. Mendez (SPIE, Bellingham, 2016b), p. 98861PGoogle Scholar
  115. D. Sporea et al., Sci Rep 7, 40209 (2017)CrossRefGoogle Scholar
  116. P. Stajanca et al., Opt. Mater. 58, 226 (2016)CrossRefGoogle Scholar
  117. A. Stăncălie et al., Sci Rep. 7, 15845 (2017)CrossRefGoogle Scholar
  118. E. Takada et al., J. Nucl. Sci. Technol. 35, 547 (1998)CrossRefGoogle Scholar
  119. E. Takada et al., J. Nucl. Sci. Technol. 36, 641 (1999)CrossRefGoogle Scholar
  120. T. Teichmann et al., Radiat. Meas. 90, 201 (2016)CrossRefGoogle Scholar
  121. F. Therriault-Proulx et al., Med. Phys. 38, 2176 (2011)CrossRefGoogle Scholar
  122. F. Therriault-Proulx et al., Phys. Med. Biol. 57, 7147 (2012)CrossRefGoogle Scholar
  123. F. Therriault-Proulx, S. Beddar, L. Beaulieu, Med. Phys. 40, 062101 (2013)CrossRefGoogle Scholar
  124. F. Therriault-Proulx, L. Wootton, S. Beddar, Phys. Med. Biol. 60, 7927 (2015)CrossRefGoogle Scholar
  125. I. Toccafondo, Distributed optical fiber radiation and temperature sensing at high energy accelerators and experiments, Doctoral dissertation, CERN (2015)Google Scholar
  126. I. Toccafondo et al., IEEE Photon. Tech. L. 27, 2182 (2015)CrossRefGoogle Scholar
  127. A.L. Tomashuk et al., J. Lightwave Technol. 32, 213 (2013)CrossRefGoogle Scholar
  128. A.L. Tomashuk et al., Opt. Express 22, 16778 (2014)CrossRefGoogle Scholar
  129. S.A. Vasiliev et al., IEEE T. Nucl. Sci. 45, 1580 (1998)Google Scholar
  130. X. Wang et al., Chin. Opt. Lett. 9, 060601 (2011)CrossRefGoogle Scholar
  131. R.H. West et al., J. Lightwave Technol. 12, 614 (1994)CrossRefGoogle Scholar
  132. L. Wootton et al., Phys. Med. Biol. 59, 647 (2014)CrossRefGoogle Scholar
  133. A. Wosniok et al., in Proc. Sixth European Workshop on Optical Fibre Sensors (EWOFS’2016), ed. by E. Lewis (SPIE, Bellingham, 2016) p. 99162Google Scholar
  134. W.J. Yoo et al., in PIERS Proceedings, August 12–15, 2013, Session 2PK, 862 (The Electromagnetics Academy, Cambridge, 2013a)Google Scholar
  135. W.J. Yoo et al., Opt. Express 21, 27770 (2013b)CrossRefGoogle Scholar
  136. W.J. Yoo et al., Appl. Radiat. Isot. 81, 196 (2013c)CrossRefGoogle Scholar
  137. E.G. Yukihara, S.W.S. McKeever, Phys. Med. Biol. 53, R351 (2008)CrossRefGoogle Scholar
  138. E.G. Yukihara et al., Radiat. Meas. 41, 1126 (2006)CrossRefGoogle Scholar
  139. E.G. Yukihara, S.W.S. McKeever, M.S. Akselrod, Radiat. Meas. 71(15) (2014)Google Scholar
  140. R. Zhang et al., Phys. Med. Biol. 58, 5477 (2013)CrossRefGoogle Scholar
  141. Y.A. Zhydachevskii et al., Radiat. Meas. 94, 18 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National Institute for Laser, Plasma and Radiation Physics, Center for Advanced Laser TechnologiesMăgureleRomania

Section editors and affiliations

  • Tong Sun
    • 1
  1. 1.Sensor EngineeringCity UniversityLondonUK

Personalised recommendations