Advertisement

Photonic Microcells for Sensing Applications

  • Chao Wang
  • Wei JinEmail author
  • Hoi Lut Ho
  • Fan Yang
Reference work entry

Abstract

This chapter presents hollow-core and suspended-core photonic microcells (PMCs) made from commercial photonic crystal fibers and single mode fibers (SMFs). These PMCs are in-fiber platforms for strong light-matter interaction and can be connected into standard SMF systems with low loss. The fabrication process and basic properties of the PMCs are introduced. The use of the PMC as gas sensors, liquid-filled temperature sensors, in-fiber micro-cantilever accelerometers, and grating-based sensors is presented. In combination with novel functional materials, the PMCs exhibit great potentials for lab-in/on-fiber and tunable photonic devices.

Notes

Acknowledgments

The Natural Science Fundament of China (Grant Nos. 61405125, 61290313, and 61535004) supported this work.

References

  1. F. Benabid, Photonic microcells based on hollow-core PCF, in (C) Optical Fiber Communication Conference: Optical Society of America, 2011Google Scholar
  2. F. Benabid, Photonic microcell: a revival tool for gas lasers, in (C) CLEO-12: Science and Innovations: Optical Society of America, 2012Google Scholar
  3. F. Benabid, F. Couny, J. Knight, T. Birks, P.S.J. Russell, Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434(7032), 488–491 (2005)CrossRefGoogle Scholar
  4. F. Benabid, P. Roberts, F. Couny, P.S. Light, Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells. J. Eur. Opt. Soc. Rapid Publ. 4, 09904-1 (2009)CrossRefGoogle Scholar
  5. F. Benabid, J.C. Knight, P.s.J. Russell, Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10(21), 1195–1203 (2002)CrossRefGoogle Scholar
  6. A.V. Brakel et al., Cavity ring-down in a photonic bandgap fiber gas cell, in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on, 2008, pp. 1–2Google Scholar
  7. J.P. Carvalho et al., Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. J. Sens. 2009(2), 10 (2009)Google Scholar
  8. Y. Chen et al., Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission, in (C) Optical Fiber Communication Conference Post Deadline Papers, Los Angeles, California: Optical Society of America, 2015, p. Th5A.1Google Scholar
  9. F. Couny, F. Benabid, P. Light, Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett. 31(24), 3574–3576 (2006)CrossRefGoogle Scholar
  10. R. Cregan et al., Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537–1539 (1999)CrossRefGoogle Scholar
  11. A.M. Cubillas, M. Silva-Lopez, J.M. Lazaro, O.M. Conde, M.N. Petrovich, J.M. Lopez-Higuera, Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 15(26), 17570–17576 (2007)CrossRefGoogle Scholar
  12. C.J. De Matos, C.M.B. Cordeiro, E.M. Dos Santos, J.S. Ong, A. Bozolan, C.H. Brito Cruz, Liquid-core, liquid-cladding photonic crystal fibers. Opt. Express 15(18), 11207–11212 (2007)CrossRefGoogle Scholar
  13. D. Donlagic, All-fiber micromachined microcell. Opt. Lett. 36(16), 3148–3150 (2011)CrossRefGoogle Scholar
  14. M.A. Finger, T.S. Iskhakov, N.Y. Joly, M.V. Chekhova, P.S.J. Russell, Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum. Phys. Rev. Lett. 115(14), 143602 (2015)CrossRefGoogle Scholar
  15. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. Nano Lett. 11(10), 4362–4365 (2011)CrossRefGoogle Scholar
  16. Y. Han et al., Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering. Opt. Eng. 47(4), 040502–040502-3 (2008)CrossRefGoogle Scholar
  17. T.P. Hansen et al., Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling. J. Lightwave Technol. 22(1), 11 (2004)CrossRefGoogle Scholar
  18. M. Hautakorpi, M. Mattinen, H. Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16(12), 8427–8432 (2008)CrossRefGoogle Scholar
  19. S. Heng et al., Microstructured optical fibers and live cells: a water-soluble, photochromic zinc sensor. Biomacromolecules 14(10), 3376–3379 (2013)CrossRefGoogle Scholar
  20. C.J. Hensley, D.H. Broaddus, C.B. Schaffer, A.L. Gaeta, Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Opt. Express 15(11), 6690–6695 (2007)CrossRefGoogle Scholar
  21. Y.L. Hoo, W. Jin, C. Shi, H.L. Ho, D.N. Wang, S.C. Ruan, Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 42(18), 3509–3515 (2003)CrossRefGoogle Scholar
  22. Y. Hoo, W. Jin, H. Ho, J. Ju, D. Wang, Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors Actuators B Chem. 105(2), 183–186 (2005)CrossRefGoogle Scholar
  23. Y. Hoo, S. Liu, H.L. Ho, W. Jin, Fast response microstructured optical fiber methane sensor with multiple side-openings. Photonics Technol. Lett. IEEE 22(5), 296–298 (2010)CrossRefGoogle Scholar
  24. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, J.C. Knight, Metallic mode confinement in microstructured fibres. Opt. Express 16(9), 5983–5990 (2008)CrossRefGoogle Scholar
  25. G. Huyang, J. Canning, M.L. Åslund, D. Stocks, T. Khoury, M.J. Crossley, Evaluation of optical fiber microcell reactor for use in remote acid sensing. Opt. Lett. 35(6), 817–819 (2010)CrossRefGoogle Scholar
  26. W. Jin, H. Xuan, H.L. Ho, Sensing with hollow-core photonic bandgap fibers. Meas. Sci. Technol. 21(9), 094014 (2010)CrossRefGoogle Scholar
  27. L. Jin, W. Jin, J. Ju, Y. Wang, Investigation of long-period grating resonances in hollow-core photonic bandgap fibers. J. Lightwave Technol. 29(11), 1707–1713 (2011)Google Scholar
  28. W. Jin, H.L. Ho, Y. Cao, J. Ju, L. Qi, Gas detection with micro- and nano-engineered optical fibers. Opt. Fiber Technol. 19(6), 741–759 (2013)CrossRefGoogle Scholar
  29. W. Jin, H. Xuan, C. Wang, W. Jin, Y. Wang, Robust microfiber photonic microcells for sensor and device applications. Opt. Express 22(23), 28132–28141 (2014)CrossRefGoogle Scholar
  30. W. Jin, Y. Cao, F. Yang, H.L. Ho, Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 6, 6767 (2015)CrossRefGoogle Scholar
  31. A.M. Jones et al., Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 19(3), 2309–2316 (2011)CrossRefGoogle Scholar
  32. J. Ju, H.F. Xuan, W. Jin, S. Liu, H.L. Ho, Selective opening of airholes in photonic crystal fiber. Opt. Lett. 35(23), 3886–3888 (2010)CrossRefGoogle Scholar
  33. K.S. Lee, Y.K. Lee, H.J. Si, A novel grating modulation technique for photonic bandgap fiber gas sensors. IEEE Photon. Technol. Lett. 23(10), 624–626 (2011)CrossRefGoogle Scholar
  34. X. Li, J. At, J. Liang, G. Xu, T. Ueda, Fabrication of photonic bandgap fiber gas cell using focused ion beam cutting. Jpn. J. Appl. Phys. 48(6), 06FK05–06FK05 (2009)Google Scholar
  35. X. Li, J. Liang, S. Lin, Y. Zimin, Y. Zhang, T. Ueda, NIR Spectrum analysis of natural gas based on hollow-core photonic bandgap fiber. Sens. J. IEEE 12(7), 2362–2367 (2012)CrossRefGoogle Scholar
  36. Y. Lin et al., Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre. Sci. Rep. 6, 39410 (2016)CrossRefGoogle Scholar
  37. G.A. Miller, G.A. Cranch, Reduction of intensity noise in hollow core optical fiber using angle-cleaved splices. IEEE Photon. Technol. Lett. 28(4), 414–417 (2016)CrossRefGoogle Scholar
  38. T.M. Monro et al., Sensing with suspended-core optical fibers. Opt. Fiber Technol. 16(6), 343–356 (2010)CrossRefGoogle Scholar
  39. J. Moura et al., Evaporation of volatile compounds in suspended-core fibers. Opt. Lett. 39(13), 3868–3871 (2014)CrossRefGoogle Scholar
  40. K. Murari et al., Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier. Optica 3(8), 816–822 (2016)CrossRefGoogle Scholar
  41. J.A. Nwaboh, J. Hald, J.K. Lyngsø, J.C. Petersen, O. Werhahn, Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm. Appl. Phys. B 110(2), 187–194 (2013)CrossRefGoogle Scholar
  42. J.P. Parry et al., Towards practical gas sensing with micro-structured fibres. Meas. Sci. Technol. 20(7), 075301 (2009)CrossRefGoogle Scholar
  43. T. Ritari et al., Gas sensing using air-guiding photonic bandgap fibers. Opt. Express 12(17), 4080–4087 (2004)CrossRefGoogle Scholar
  44. P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006)CrossRefGoogle Scholar
  45. J.R. Sparks et al., Selective semiconductor filling of microstructured optical fibers. J. Lightwave Technol. 29(13), 2005–2008 (2011)CrossRefGoogle Scholar
  46. M. Sprague et al., Broadband single-photon-level memory in a hollow-core photonic crystal fibre. Nat. Photonics 8, 287 (2014)CrossRefGoogle Scholar
  47. P. Uebel et al., Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett. 41(9), 1961–1964 (2016)CrossRefGoogle Scholar
  48. A.van Brakel, C. Grivas, M.N. Petrovich, D.J. Richardson, Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt. Express 15(14), 8731–8736 (2007)CrossRefGoogle Scholar
  49. C. Wang, Fiber Bragg gratings inscribed in all-silica suspended-core photonic microcells, in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Sydney, p. BTh4B.5: Optical Society of America, 2016Google Scholar
  50. C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, Bragg gratings inscribed in selectively inflated photonic crystal fibers, Opt. Express 25(23), 28442–28450 (2017)CrossRefGoogle Scholar
  51. Y. Wang et al., Long period gratings in air-core photonic bandgap fibers. Opt. Express 16(4), 2784–2790 (2008)CrossRefGoogle Scholar
  52. Y. Wang, C. Liao, D. Wang, Femtosecond laser-assisted selective infiltration of microstructured optical fibers. Opt. Express 18(17), 18056–18060 (2010)CrossRefGoogle Scholar
  53. C. Wang, W. Jin, J. Ma, Y. Wang, H.L. Ho, X. Shi, Suspended core photonic microcells for sensing and device applications. Opt. Lett. 38(11), 1881–1883 (2013a)CrossRefGoogle Scholar
  54. C. Wang et al., Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells. Appl. Opt. 52(22), 5430–5439 (2013b)CrossRefGoogle Scholar
  55. C. Wang, W. Jin, J. Ma, W. Jin, H.L. Ho, Photonic microcells for novel devices and sensor applications, in (C) APOS 2013, Wuhan, China, 2013c, vol. 8924, p. 27Google Scholar
  56. C. Wang et al., Highly birefringent suspended-core photonic microcells for refractive-index sensing. Appl. Phys. Lett. 105(6), 061105 (2014)CrossRefGoogle Scholar
  57. C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, H.L. Ho, Evanescent-field photonic microcells and their applications in sensing. Measurement 79, 172–181 (2016)CrossRefGoogle Scholar
  58. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt. Express 15(19), 11952–11958 (2007)CrossRefGoogle Scholar
  59. P. Westbrook, B. Eggleton, R. Windeler, A. Hale, T. Strasser, G. Burdge, Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. Photonics Technol. Lett. IEEE 12(5), 495–497 (2000)CrossRefGoogle Scholar
  60. R.M. Wynne, B. Barabadi, K.J. Creedon, A. Ortega, Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor. J. Lightwave Technol. 27(11), 1590–1596 (2009)CrossRefGoogle Scholar
  61. L. Xiao, M. Demokan, W. Jin, Y. Wang, C.-L. Zhao, Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect. J. Lightwave Technol. 25(11), 3563–3574 (2007)CrossRefGoogle Scholar
  62. F. Yang, Novel hollow-core optical fiber gas and acoustic sensors, Ph.D, (PolyU) Department of Electrical Engineering, The HK Polytechnic University, 2015Google Scholar
  63. F. Yang, W. Jin, All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550-nm hollow-core fiber, in 25th International Conference on Optical Fiber Sensors, 2017, vol. 10323, p. 4: SPIE.Google Scholar
  64. F. Yang, W. Jin, Y. Lin, C. Wang, H.L. Ho, Y. Tan, Hollow-core microstructured optical fiber gas sensors. J. Lightwave Technol. PP(99), 1–1 (2016a)Google Scholar
  65. F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, H.L. Ho, Hollow-core fiber Fabry–Perot photothermal gas sensor. Opt. Lett. 41(13), 3025–3028 (2016b)CrossRefGoogle Scholar
  66. F. Yang, W. Jin, Y. Cao, H.L. Ho, Y. Wang, Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 22(20), 24894–24907 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringWuhan UniversityWuhanChina
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina

Section editors and affiliations

  • Dongning Wang
    • 1
  1. 1.College of Optical and Electronic TechnologyChina Jiliang UniversityHangzhouChina

Personalised recommendations