Advertisement

Microstructured Polymer Optical Fiber Gratings and Sensors

  • Getinet WoyessaEmail author
  • Andrea Fasano
  • Christos Markos
Reference work entry

Abstract

This chapter describes the realization of microstructured polymer optical fibers Bragg gratings (mPOFBGs) and their use in various sensing applications. Different grating inscription techniques based on different lasers used in recording grating in mPOF are presented. Grating inscription in mPOFs can be a challenging task compared to step index fibers because the microstructured cladding holes introduce scattering preventing the laser from reaching the core of the fiber easily. Inscription of gratings in mPOFs fabricated from different polymer materials such as Topas, Zeonex, Polycarbonate (PC) is discussed, and their optical and sensing performance is directly compared with the widely used poly(methylmethacrylate)(PMMA). The progress on fabrication of gratings in different types of mPOFs is presented in terms of grating inscription time, strength, and Bragg wavelengths. This chapter also describes the annealing process of mPOFs or mPOFBGs which is one of the curtail step in the development of stable mPOFBG sensors. The different annealing methods that have been applied by the research community are also presented. In addition, an overview on strain, humidity, temperature, pressure, and acceleration sensors developed from mPOFBGs is provided. A direct comparison in terms of their sensitivity, sensing range, and their performance in general is presented. Finally, the way to improve the development of stable mPOFBG sensors and widen their application areas is briefly discussed.

Notes

Acknowledgements

The authors would like to acknowledge the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n 608382 and Danish Council for Independent Research (FTP Case No. 4184-00359B).

References

  1. T. Baghdasaryan, T. Geernaert, F. Berghmans, H. Thienpont, Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription. Opt. Express 19(8), 7705–7716 (2011)CrossRefGoogle Scholar
  2. T. Bremner, A. Rudin, D.G. Cook, Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci. 41(78), 1617–1627 (1990)CrossRefGoogle Scholar
  3. C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, D.J. Webb, G. Carpintero, H. Lamela, in Polymer optical fibre sensors for endoscopic opto-acoustic imaging, Proceedings of SPIE 9539, Opto-Acoustic Methods and Applications in Biophotonics II, 953907 (2015)Google Scholar
  4. I.-L. Bundalo, K. Nielsen, C. Markos, O. Bang, Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Opt. Express 22(5), 5270–5276 (2014)CrossRefGoogle Scholar
  5. I.-L. Bundalo, K. Nielsen, O. Bang, Angle dependent fiber Bragg grating inscription in microstructured polymer optical fibers. Opt. Express 23(3), 3699–3707 (2015)CrossRefGoogle Scholar
  6. K.E. Carroll, C. Zhang, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt. Express 15(14), 8844–8850 (2007)CrossRefGoogle Scholar
  7. Data Sheet Topas 5013S-04, Topas Advanced Polymers Inc., 2015, http://www.topas.com/sites/default/files/TDS_5013S_04_e_1.pdf
  8. Data Sheet Topas 8007F-04, Topas Advanced Polymers Inc., 2015, http://www.topas.com/sites/default/files/TDS_8007F-04_english%20units_0.pdf
  9. H. Dobb, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, M.A. van Eijkelenborg, Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. Opt. Lett. 30(24), 3296–3298 (2005)CrossRefGoogle Scholar
  10. G. Emiliyanov, J.B. Jensen, O. Bang, P.E. Hoiby, L.H. Pedersen, E.M. Kjaer, L. Lindvold, Localized biosensing with Topas microstructured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)CrossRefGoogle Scholar
  11. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H.K. Rasmussen, K. Krebber, O. Bang, Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high temperature resistant fiber Bragg grating strain sensors. Opt. Mater. Express 6(2), 649–659 (2016)CrossRefGoogle Scholar
  12. A. Fasano, G. Woyessa, J. Janting, H.K. Rasmussen, O. Bang, Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature. IEEE Photon. Technol. Lett. 29(8), 687–690 (2017)CrossRefGoogle Scholar
  13. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, Bragg gratings fabricated in monomode photosensitive optical fibre by UV exposure through a phase mask. Appl. Phys. Lett. 62(10), 1035–1037 (1993)CrossRefGoogle Scholar
  14. X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, C. Caucheteur, BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Opt. Lett. 42(11), 2206–2212 (2017)CrossRefGoogle Scholar
  15. T. Ishigure, M. Hirai, M. Sato, Y. Koike, Graded-index plastic optical fiber with high mechanical properties enabling easy network installations. II. J. Appl. Polym. Sci. 91(1), 404–409 (2004)CrossRefGoogle Scholar
  16. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, A. Bjarklev, Selective detection of antibodies in microstructured polymer optical fibers. Opt. Express 13(15), 5883–5889 (2005)CrossRefGoogle Scholar
  17. I.P. Johnson, K. Kalli, D.J. Webb, 827 nm Bragg grating sensor in multimode microstructured polymer optical fibre. Electron. Lett. 46(17), 1217–1218 (2010a)CrossRefGoogle Scholar
  18. I.P. Johnson, D.J. Webb, K. Kalli, M.C.J. Large, A. Argyros, Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber. Proc. SPIE 7714, 77140D (2010b)CrossRefGoogle Scholar
  19. I.P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H.K. Rasmussen, L. Khan, D.J. Webb, K. Kalli, O. Bang, Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron. Lett. 47(4), 271–272 (2011)CrossRefGoogle Scholar
  20. I.P. Johnson, D.J. Webb, K. Kalli, Hydrostatic pressure sensing using a polymer optical fiber Bragg gratings. Proc. SPIE 8351, 835106 (2012)CrossRefGoogle Scholar
  21. K. Kalli, C. Riziotis, A. Posporis, C. Markos, C. Koutsides, S. Ambran, A.S. Webb, C. Holmes, J.C. Gates, J.K. Sahu, P.G.R. Smith, Flat fibre and femtosecond laser technology as a novel photonic integration platform for optofluidic based biosensing devices and lab-on-chip applications: Current results and future perspectives. Sens. Actuators B. Chem. 209, 1030–1040 (2015)CrossRefGoogle Scholar
  22. G. Khanarian, H. Celanese, Optical properties of cyclic olefin copolymers. Opt. Eng. 40(6), 1024–1029 (2001)CrossRefGoogle Scholar
  23. S.G. Leon-Saval, R. Lwin, A. Argyros, Multicore composite single-mode polymer fiber. Opt. Express 20(1), 141–148 (2012)CrossRefGoogle Scholar
  24. B. Malo, K.O. Hill, F. Bilodeau, D.C. Johnson, J. Albert, Point-by-point fabrication of micro-Bragg grating in photosensitive fibre using single excimer pulse refractive index modification techniques. Electron. Lett. 29(18), 1668–1669 (1993)CrossRefGoogle Scholar
  25. C. Markos, W. Yuan, K. Vlachos, G.E. Town, O. Bang, Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. Opt. Express 19(8), 7790–7798 (2011)CrossRefGoogle Scholar
  26. C. Markos, A. Stefani, K. Nielsen, H.K. Rasmussen, W. Yuan, O. Bang, High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4765 (2013)CrossRefGoogle Scholar
  27. G.D. Marshall, D.J. Kan, A.A. Asatryan, L.C. Botten, M.J. Withford, Transverse coupling to the core of a photonic crystal fiber: The photo-inscription of gratings. Opt. Express 15(12), 7876–7887 (2007)CrossRefGoogle Scholar
  28. A. Martinez, M. Dubov, I. Khrushchev, I. Bennion, Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40(19), 1170–1172 (2004)CrossRefGoogle Scholar
  29. G. Meltz, W.W. Morey, W.H. Glenn, Formation of Bragg gratings in optical fibres by a transverse holographic method. Opt. Lett. 14(15), 823–825 (1989)CrossRefGoogle Scholar
  30. R. Oliveira, L. Bilro, R. Nogueira, Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Opt. Express 23(8), 10181–10187 (2015)CrossRefGoogle Scholar
  31. Optical properties of Makrolon and Apec for non-imaging optics, Bayer Material ScienceAG, 2014, http://www.plastics.covestro.com/Products/~/media/B6555362438341FF9804F21A253E5B23.ashx?la=en
  32. J.K.M. Pedersen, G. Woyessa, K. Nielsen, O. Bang, Intrinsic pressure response of a single-mode cyclo olefin polymer microstructured optical fibre Bragg grating, in Proceedings of the International Plastic Optical Fibres Conference, Birmingham (2016). ISBN: 978 1 85449 408 5Google Scholar
  33. S. Roy, C.Y. Yue, Z.Y. Wang, L. Anand, Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers. Sens. Actuators B Chem. 161(1), 1067–1073 (2012)CrossRefGoogle Scholar
  34. D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, D.J. Webb, Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core. Opt. Lett. 38(19), 3769–3772 (2013)CrossRefGoogle Scholar
  35. E.E. Shafee, Effect of photodegradation on the [beta]-relaxation in poly(methylmethacrylate). Polym. Degrad. Stab. 53, 57–61 (1996)CrossRefGoogle Scholar
  36. L.S.A. Smith, V. Schmitz, The effect of water on the glass transition temperature of poly (methyl methacrylate). Polymer 29(10), 1871–1878 (1988)CrossRefGoogle Scholar
  37. G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, W. Urbanczyk, Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders. Opt. Express 21(7), 8521–8534 (2013)CrossRefGoogle Scholar
  38. A. Stefani, W. Yuan, C. Markos, O. Bang, Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers. IEEE Photon. Technol. Lett. 23(10), 660–662 (2011)CrossRefGoogle Scholar
  39. A. Stefani, M. Stecher, G.E. Town, O. Bang, Direct writing of fiber Bragg grating in microstructured polymer optical fiber. IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012a)CrossRefGoogle Scholar
  40. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, High sensitivity polymer optical fiber-Bragg-grating-based accelerometer. IEEE Photon. Technol. Lett. 24(9), 763–765 (2012b)CrossRefGoogle Scholar
  41. Technical data, Zeonex, Cyclo Olifen Polymer (COC), 2017, http://www.zeonex.com/optics.aspx
  42. Topas COC product overview, Topas Advanced Polymers Inc., 2014, http://www.topas.com/sites/default/files/files/TOPAS_Brochure_E_2014_06(1).pdf
  43. É. Torres, M.N. Berberan-Santos, M.J. Brites, Synthesis, photophysical and electrochemical properties of perylene dyes. Dyes Pigments 112, 298–304 (2015)CrossRefGoogle Scholar
  44. D.L. Williams, Photosensitivity: The phenomenon and its applications, Advanced Photonic Topics, (Universidad de Cantabria, Santander, 1997). books.google.comGoogle Scholar
  45. D.R.G. Williams, P.E.M. Allen, V.T. Truong, Glass transition temperature and stress relaxation of methanol equilibrated poly (methyl methacrylate). Eur. Polym. J. 22(11), 911–919 (1986)CrossRefGoogle Scholar
  46. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, O. Bang, Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 24(2), 1206–1213 (2016)CrossRefGoogle Scholar
  47. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H.K. Rasmussen, O. Bang, Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 7(1), 286–295 (2017a)CrossRefGoogle Scholar
  48. G. Woyessa, A. Fasano, C. Markos, H.K. Rasmussen, O. Bang, Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Photon. Technol. Lett. 29(7), 575–578 (2017b)CrossRefGoogle Scholar
  49. G. Woyessa, J.M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H.K. Rasmussen, O. Bang, Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing. Opt. Lett. 42(6), 1161–1164 (2017c)CrossRefGoogle Scholar
  50. Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, Effects of the zeroth-order diffraction of a phase mask on Bragg gratings. J. Lightwave Technol. 17(11), 2361–2365 (1999)CrossRefGoogle Scholar
  51. W. Yuan, L. Khan, D.J. Webb, K. Kalli, H.K. Rasmussen, A. Stefani, O. Bang, Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express 19(20), 19731–19739 (2011)CrossRefGoogle Scholar
  52. W. Yuan, A. Stefani, O. Bang, Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors. IEEE Photon. Technol. Lett. 24(5), 401–403 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Getinet Woyessa
    • 1
    Email author
  • Andrea Fasano
    • 2
  • Christos Markos
    • 1
  1. 1.DTU Fotonik, Department of Photonics EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.DTU Mekanik, Department of Mechanical EngineeringTechnical University of DenmarkLyngbyDenmark

Section editors and affiliations

  • Ginu Rajan
    • 1
  1. 1.School of Electrical, Computer and Telecommunications EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations