Encyclopedia of Ocean Engineering

Living Edition
| Editors: Weicheng Cui, Shixiao Fu, Zhiqiang Hu

Power Take-Off System

  • Wanan ShengEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-6963-5_191-1

Synonyms

Definition

A power take-off of a wave energy converter is a mechanism with which the absorbed energy in the form of mechanical/pneumatic/potential energy from the primary energy conversion stage is transformed into useful mechanical energy for further energy conversion, mostly into electricity if a generator is connected to the PTO.

Scientific Fundamentals

Power Conversion Principle

For power conversion, it can be made using either translational or rotational motions and their corresponding PTO force or torque. When a translational motion is used for power conversion, the capture power by the PTO is calculated as
$$ P={F}_{pto}\cdot V $$
This is a preview of subscription content, log in to check access.

References

  1. Babarit A, Clement AH (2006) Optimal latching control of a wave energy device in regular and irregular waves. Appl Ocean Res 28:77–91.  https://doi.org/10.1016/j.apor.2006.05.002CrossRefGoogle Scholar
  2. Babarit A, Guglielmi M, Clement AH (2009) Declutching control of a wave energy converter. Ocean Eng 36:1015–1024.  https://doi.org/10.1016/j.oceaneng.2009.05.006CrossRefGoogle Scholar
  3. Babarit A et al (2012) Numerical benchmarking study of a selection of wave energy converters. Renew Energy 41:44–63.  https://doi.org/10.1016/j.renene.2011.10.002CrossRefGoogle Scholar
  4. Brekken TKA (2011) On model predictive control for a point absorber wave energy converter. PowerTec, 2011 IEEE 19–23 June 2011Google Scholar
  5. Budal K, Falnes J (1977) Optimum operation of improved wave-power converter. Mar Sci Commun 3(2):133–150Google Scholar
  6. Bull D (2014) Pneumatic performance of a non-axisymmetric floating oscillating water column wave energy conversion device in random waves. In: Proceedings of the 2nd marine energy technology symposium, Seattle, 15–18 Apr 2014Google Scholar
  7. Cretel JAM et al (2011) Maximisation of energy capture by a wave-energy point absorber using model predictive control. In: Proceedings of 18th international federation of automatic control (IFAC), Milano, 28 Aug – 2 Sept 2011Google Scholar
  8. Drew B, Plummer AR, Sahinkaya MN (2009) A review of wave energy converter technology. Proc Inst Mech Eng 223:887–902.  https://doi.org/10.1243/09576509JPE782CrossRefGoogle Scholar
  9. Evans DV (1981) Maximum wave-power absorption under motion constraints. Appl Ocean Res 3(4):200–203CrossRefGoogle Scholar
  10. Falcao AF (2007) Modelling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator. Ocean Eng 34(14–15):2021–2032.  https://doi.org/10.1016/j.oceaneng.2007.02.006CrossRefGoogle Scholar
  11. Falcao A (2008) Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system. Ocean Eng 35:358–366.  https://doi.org/10.1016/j.oceaneng.2007.10.005CrossRefGoogle Scholar
  12. Falcao A (2010) Wave energy utilization: a review of the technologies. Renew Sust Energ Rev 14(3):899–918.  https://doi.org/10.1016/j.rser.2009.11.003CrossRefGoogle Scholar
  13. Falcao A, Gato LMC (eds) (2012) Air turbines. In: Sayigh A (ed) Comprehensive renewable energy, vol 8. Elsevier, Oxford, pp 111–149Google Scholar
  14. Falnes J (1980) Radiation impedance matrix and optimum power absorption for interacting oscillating in surface waves. Appl Ocean Res 2(2):75–80CrossRefGoogle Scholar
  15. Falnes J (1995) Principles for capture of energy from ocean waves. Phase control and optimum oscillation. http://folk.ntnu.no/falnes/web_arkiv/InstFysikk/phcontrl.pdf. Accessed 25 July 2013
  16. Falnes J (1999) Wave-energy conversion through relative motion between two single model oscillating bodies. Transaction of the ASME 121:32–38CrossRefGoogle Scholar
  17. Falnes J (2002) Ocean waves and oscillating systems: linear interaction including wave-energy extraction. UK, Cambridge University PressGoogle Scholar
  18. Folley M, Curran R, Whittaker T (2006) Comparison of LIMPET contra-rotating wells turbine with theoretical and model test predictions. Ocean Eng 33(8–9):1056–1069.  https://doi.org/10.1016/j.oceaneng.2005.08.001CrossRefGoogle Scholar
  19. Fusco F, Ringwood JV (2012) A study of the prediction requirements in real-time control of wave energy converters. IEEE Trans Sustainable Energy 3(1):176–184.  https://doi.org/10.1109/TSTE.2011.2170226CrossRefGoogle Scholar
  20. Hals J, Falnes J, Moan T (2011) A comparison of selected strategies for adaptive control of wave energy converters. J Offshore Mech Arct Eng 133:031101-1Google Scholar
  21. Kofoed JP et al (2005) Description of the power take-off system on board the wave dragon prototype. In: Second CA-OE workshop on component technology and power take-off, Uppsala, 2–3 Nov 2005Google Scholar
  22. Nebel P (1992) Maximising the efficiency of wave energy plant using complex conjugate control. Proc Inst Mech Eng 206(4):225–236Google Scholar
  23. Ozkop E, Altas IH (2017) Control, power and electrical components in wave energy conversion systems: a review of the technologies. Renew Sust Energ Rev 67:106–115.  https://doi.org/10.1016/j.rser.2016.09.012CrossRefGoogle Scholar
  24. Pizer D (1993) Maximum wave-power absorption of point absorbers under motion constraints. Appl Ocean Res 15(4):227–234.  https://doi.org/10.1016/0141-1187(93)90011-LCrossRefGoogle Scholar
  25. Rafiee A, Fievez J (2015) Numerical prediction of extreme loads on the CETO wave energy converter. In: Proceedings of the 11th European wave and tidal energy conference, Nantes, 6–11 Sept 2015Google Scholar
  26. Ringwood JV, Bacelli G, Fusco F (2014) Energy-maximizing control of wave energy converters. IEE Control Syst 34(5):30–55.  https://doi.org/10.1109/MCS.2014.2333253CrossRefGoogle Scholar
  27. Seabased (2015) Sotenäs wave power. http://www.seabased.com/en/projects/sotenas-wave-pover. Accessed 15 Feb 2015
  28. Sheng W, Lewis A (2012) Assessment of wave energy extraction from seas: numerical validation. J Energy Resour Technol 134:041701.  https://doi.org/10.1115/1.4007193CrossRefGoogle Scholar
  29. Sheng W, Lewis A (2016a) Energy conversion: a comparison of fix- and self-referenced wave energy converters. Energies 8:054501.  https://doi.org/10.1063/1.4963237CrossRefGoogle Scholar
  30. Sheng W, Lewis A (2016b) Power take-off optimisation for maximising energy conversion of wave activated bodies. IEEE J Ocean Eng 41:529.  https://doi.org/10.1109/JOE.2015.2489798CrossRefGoogle Scholar
  31. Sheng W, Alcorn R, Lewis A (2015) On improving wave energy conversion, part II: development of latching control technologies. Renew Energy 75:935–944.  https://doi.org/10.1016/j.renene.2014.09.049CrossRefGoogle Scholar
  32. WES (2015) Wave energy Scotland initiatives. http://www.hie.co.uk/growth-sectors/energy/wave-energy-scotland/. Accessed 15 Feb 2016
  33. Whittaker TJT, Folley M (2012) Nearshore oscillating wave surge converters and the development of Oyster. Philos Trans R Soc A Math Phys Eng Sci 370:345–364.  https://doi.org/10.1098/rsta.2011.0152CrossRefGoogle Scholar
  34. Zheng S, Zhang Y, Sheng W (2016a) Maximum theoretical power absorption of connected floating bodies under motion constraints. Appl Ocean Res 58:95–103.  https://doi.org/10.1016/j.apor.2016.03.015CrossRefGoogle Scholar
  35. Zheng S, Zhang Y, Sheng W (2016b) Maximum wave energy conversion by two interconnected floaters. J Energy Resour Technol 138:032004-1.  https://doi.org/10.1115/1.4032793CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.SW MARE Marine Technology and ConsultationCorkIreland

Section editors and affiliations

  • Zhen Gao
    • 1
  1. 1.Norwegian University of Science and TechnologyTrondheimNorway