Advertisement

Spectral Solvers for Crystal Plasticity and Multi-physics Simulations

  • Pratheek Shanthraj
  • Martin Diehl
  • Philip Eisenlohr
  • Franz Roters
  • Dierk Raabe
Living reference work entry

Abstract

The local and global behavior of materials with internal microstructures is often investigated on a (representative) volume element. Typically, periodic boundary conditions are applied on such “virtual specimens” to mimic the situation in the bulk of the material. While, in general, different types of boundary value solvers can be used to solve for mechanical equilibrium, spectral methods have been established as a powerful numerical tool especially suited for this task [for application examples see 1–7]. Starting from the pioneering work of Moulinec and Suquet [8], several improvements in performance and stability have been achieved for solving mechanical boundary value problems [9–13]. Recent advancements of using the spectral approach to solve coupled field equations enable the modeling of multiphysical phenomena such as fracture propagation, temperature evolution, chemical diffusion, and phase transformation in conjunction with the mechanical boundary value problem. The fundamentals of such a multi-physics framework, which is implemented in the Düsseldorf Advanced Materials Simulation Kit (DAMASK) [14, 57] are presented in the following together with implementation details and illustrative examples.

Notes

Acknowledgments

PS and FR acknowledge funding through SFB 761 Steel – ab initio by the Deutsche Forschungsgemeinschaft (DFG). MD acknowledges the funding of the TCMPrecipSteel project in the framework of the SPP 1713 Strong coupling of thermo-chemical and thermo-mechanical states in applied materials by the DFG.

References

  1. 1.
    Lebensohn RA, Brenner R, Castelnau O, Rollett AD. Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater. 2008;56(15):3914–26.  https://doi.org/10.1016/j.actamat.2008.04.016.CrossRefGoogle Scholar
  2. 2.
    Suquet P, Moulinec H, Castelnau O, Montagnat M, Lahellec N, Grennerat F, Duval P, Brenner R. Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep. In: Procedia IUTAM: IUTAM symposium on linking scales in computation: from microstructure to macroscale properties, vol. 3, p. 64–78. 2012.  https://doi.org/10.1016/j.piutam.2012.03.006.CrossRefGoogle Scholar
  3. 3.
    Ma D, Eisenlohr P, Epler E, Volkert CA, Shanthraj P, Diehl M, Roters F, Raabe D. Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression. Acta Mater. 2016;103:796–808.  https://doi.org/10.1016/j.actamat.2015.11.016.CrossRefGoogle Scholar
  4. 4.
    De Geus TWJ, Maresca F, Peerlings RHJ, Geers MGD. Microscopic plasticity and damage in two-phase steels: on the competing role of crystallography and phase contrast. Mech Mater. 2016;101:147–59.  https://doi.org/10.1016/j.mechmat.2016.07.014.CrossRefGoogle Scholar
  5. 5.
    Zhang H, Diehl M, Roters F, Raabe D. A virtual laboratory for initial yield surface determination using high resolution crystal plasticity simulations. Int J Plast. 2016;80:111–38.  https://doi.org/10.1016/j.ijplas.2016.01.002.CrossRefGoogle Scholar
  6. 6.
    Arul Kumar M, Beyerlein IJ, McCabe RJ, Tomé CN. Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat Commun. 2016;7:13826.  https://doi.org/10.1038/ncomms13826.CrossRefGoogle Scholar
  7. 7.
    Diehl M, Shanthraj P, Eisenlohr P, Roters F. Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica. 2016;51(2):429–41.  https://doi.org/10.1007/s11012-015-0281-2.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear properties of composites. C R Acad Sci Sér II Mécanique Phys Chim Astronomie. 1994;318:1417–23.MATHGoogle Scholar
  9. 9.
    Monchiet V, Bonnet G. A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. Int J Numer Methods Eng. 2012;89(11):1419–36.  https://doi.org/10.1002/nme.3295.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Moulinec H, Silva F. Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials. Int J Numer Methods Eng. 2014;97(13):960–85.  https://doi.org/10.1002/nme.4614.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Schneider M. Convergence of FFT-based homogenization for strongly heterogeneous media. Math Methods Appl Sci. 2014.  https://doi.org/10.1002/mma.3259.
  12. 12.
    Zeman J, Vondřejc J, Novák J, Marek I. Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comput Phys. 2010;229(21):8065–71.  https://doi.org/10.1016/j.jcp.2010.07.010.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zeman J, De Geus TWJ, Vondřejc J, Peerlings RHJ, Geers MGD. A finite element perspective on non-linear FFT-based micromechanical simulations. Int J Numer Methods Eng. 2016.  https://doi.org/10.1002/nme.5481.
  14. 14.
    Roters F, Eisenlohr P, Kords C, Tjahjanto DD, Diehl M, Raabe D. DAMASK: the Düsseldorf advanced Material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. In: Cazacu O, editor. Procedia IUTAM: IUTAM symposium on linking scales in computation: from microstructure to macroscale properties, vol. 3. Amsterdam: Elsevier; 2012. p. 3–10.  https://doi.org/10.1016/j.piutam.2012.03.001.CrossRefGoogle Scholar
  15. 15.
    Roters F, Diehl M, Shanthraj P, Eisenlohr P, Reuber C, Wong SL, Maiti T, Ebrahimi A, Hochrainer T, Fabritius H-O, Nikolov S, Friák M, Fujita N, Grilli N, Janssens KGF, Jia N, Kok PJJ, Ma D, Meier F, Werner E, Stricker M, Weygand D, Raabe D. DAMASK – the Düsseldorf advanced material simulation Kit for modelling multi-physics crystal plasticity, damage, and thermal phenomena from the single crystal up to the component scale. Comput. Mater. Sci. 2018. (article in press).Google Scholar
  16. 16.
    Trefethen LN. Finite differences and spectral methods for ordinary and partial differtential equations. Ithaca, 1996. https://www.math.hmc.edu/~dyong/math165/trefethenbook.pdf
  17. 17.
    Boyd JP. Chebyshev and Fourier spectral methods. 2nd ed. New York: Dover Publications; 2000.Google Scholar
  18. 18.
    Trefethen LN. Spectral methods in MATLAB. Soc Ind Appl Math. 2012.  https://doi.org/10.1137/1.9780898719598.
  19. 19.
    Shanthraj P, Svendsen B, Sharma L, Roters F, Raabe D. Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J Mech Phys Solids. 2017;99:19–34.  https://doi.org/10.1016/j.jmps.2016.10.012.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hutchinson JW. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc A. 1976;348:101–27.  https://doi.org/10.1098/rspa.1976.0027.CrossRefMATHGoogle Scholar
  21. 21.
    Peirce D, Asaro RJ, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 1982;30(6):1087–119.  https://doi.org/10.1016/0001-6160(82)90005-0.CrossRefGoogle Scholar
  22. 22.
    Lebensohn RA. N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater. 2001;49(14):2723–37.  https://doi.org/10.1016/S1359-6454(01)00172-0.CrossRefGoogle Scholar
  23. 23.
    Lebensohn RA, Castelnau O, Brenner R, Gilormini P. Study of the antiplane deformation of linear 2-D polycrystals with different microstructures. Int J Solids Struct. 2005;42(20):5441–59.  https://doi.org/10.1016/j.ijsolstr.2005.02.051.CrossRefMATHGoogle Scholar
  24. 24.
    Lefebvre G, Sinclair CW, Lebensohn RA, Mithieux J-D. Accounting for local interactions in the prediction of roping of ferritic stainless steel sheets. Model Simul Mater Sci Eng. 2012;20(2):024008.  https://doi.org/10.1088/0965-0393/20/2/024008.CrossRefGoogle Scholar
  25. 25.
    Lebensohn RA, Kanjarla AK, Eisenlohr P. An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast. 2012;32–33:59–69.  https://doi.org/10.1016/j.ijplas.2011.12.005.CrossRefGoogle Scholar
  26. 26.
    Grennerat F, Montagnat M, Castelnau O, Vacher P, Moulinec H, Suquet P, Duval P. Experimental characterization of the intragranular strain field in columnar ice during transient creep. Acta Mater. 2012;60(8):3655–66.  https://doi.org/10.1016/j.actamat.2012.03.025.CrossRefGoogle Scholar
  27. 27.
    Michel JC, Moulinec H, Suquet P. A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int J Numer Methods Eng. 2001;52(12):139–60.  https://doi.org/10.1002/nme.275.CrossRefGoogle Scholar
  28. 28.
    Eyre DJ, Milton GW. A fast numerical scheme for computing the response of composites using grid refinement. Eur Phys J Appl Phys. 1999;6(1):41–7.  https://doi.org/10.1051/epjap:1999150.CrossRefGoogle Scholar
  29. 29.
    Brisard S, Dormieux L. FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci. 2010;49(3):663–71.  https://doi.org/10.1016/j.commatsci.2010.06.009.CrossRefGoogle Scholar
  30. 30.
    Schneider M, Merkert D, Kabel M. FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int J Numer Methods Eng. 2016;109(10):1461–89.  https://doi.org/10.1002/nme.5336.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    De Geus TWJ, Vondřejc J, Zeman J, Peerlings RHJ, Geers MGD. Finite strain FFT-based non-linear solvers made simple. Comput Methods Appl Mech Eng. 2017;12:032.  https://doi.org/10.1016/j.cma.2016.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Vinogradov V, Milton GW. An accelerated FFT algorithm for thermoelastic and non-linear composites. Int J Numer Methods Eng. 2008;76(11):1678–95.  https://doi.org/10.1002/nme.2375.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Shanthraj P, Sharma L, Svendsen B, Roters F, Raabe D. A phase field model for damage in elasto-viscoplastic materials. Comput Methods Appl Mech Eng. 2016;312:167–85.  https://doi.org/10.1016/j.cma.2016.05.006.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Eisenlohr P, Diehl M, Lebensohn RA, Roters F. A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast. 2013;46:37–53.  https://doi.org/10.1016/j.ijplas.2012.09.012.CrossRefGoogle Scholar
  35. 35.
    Shanthraj P, Eisenlohr P, Diehl M, Roters F. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int J Plast. 2015;66:31–45.  https://doi.org/10.1016/j.ijplas.2014.02.006.CrossRefGoogle Scholar
  36. 36.
    Lahellec N, Michel JC, Moulinec H, Suquet P. Analysis of inhomogeneous materials at large strains using fast Fourier transforms. In: Miehe C, editor. IUTAM symposium on computational mechanics of solid materials at large strains, Solid mechanics and its applications, vol. 108. Dordrecht: Kluwer; 2001. p. 247–58.  https://doi.org/10.1007/978-94-017-0297-3_22.CrossRefMATHGoogle Scholar
  37. 37.
    Mura T. Micromechanics of defects in solids. 2nd ed. Dordrecht: Martinus Nijhoff Publishers; 1987.CrossRefGoogle Scholar
  38. 38.
    Michel JC, Moulinec H, Suquet P. A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast. Comput Model Eng Sci. 2000;1(2):79–88.  https://doi.org/10.3970/cmes.2000.001.239.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kachanov L. Introduction to continuum damage mechanics. Dodrecht: Springer Science+Business Media; 1986.CrossRefGoogle Scholar
  40. 40.
    Chaboche JL. Continuum damage mechanics 1. General concepts. J Appl Mech Trans ASME. 1988;55(1):59–64.CrossRefGoogle Scholar
  41. 41.
    Bourdin B, Francfort GA, Marigo J-J. Numerical experiments in revisited brittle fracture. J Mech Phys Solids. 2000;48(4):797–826.  https://doi.org/10.1016/S0022-5096(99)00028-9.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int J Numer Methods Eng. 2010;83(10):1273–311.  https://doi.org/10.1002/nme.2861.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Frigo M, Johnson SG. The design and implementation of FFTW3. Proc IEEE. 2005;93(2):216–31.  https://doi.org/10.1109/JPR0C.2004.840301.CrossRefGoogle Scholar
  44. 44.
    Gottlieb D, Shu C-W. On the Gibbs phenomenon and its resolution. SIAM Rev. 1997;39(4):644–68. http://www.jstor.org/stable/2132695.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Gelb A, Gottlieb S. Chapter: The resolution of the Gibbs phenomenon for fourier spectral methods. In: Jerri, A. (Ed.), Advances in the Gibbs phenomenon. Potsdam, New York: Sampling Publishing; 2007.Google Scholar
  46. 46.
    Willot F. Fourier-based schemes for computing the mechanical response of composites with accurate local fields. C R Mécanique. 2015;343(3):232–45.MathSciNetCrossRefGoogle Scholar
  47. 47.
    Kaßbohm S, Müller WH, Feßler R. Improved approximations of Fourier coefficients for computing periodic structures with arbitrary stiffness distribution. Comput Mater Sci. 2006;37(1–2):90–3.  https://doi.org/10.1016/j.commatsci.2005.12.010.CrossRefGoogle Scholar
  48. 48.
    Schneider M, Ospald F, Kabel M. Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng. 2015;105(9):693–720.  https://doi.org/10.1002/nme.5008.MathSciNetCrossRefGoogle Scholar
  49. 49.
    Kabel M, Fliegener S, Schneider M. Mixed boundary conditions for FFT-based homogenization at finite strains. Comput Mater Sci. 2016;57(2):193–210.  https://doi.org/10.1007/s00466-015-1227-1.MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng. 1998;157(1–2):69–94.  https://doi.org/10.1016/S0045-7825(97)00218-1.MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Gélébart L, Mondon-Cancel R. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput Mater Sci. 2013;77:430–9.  https://doi.org/10.1016/j.commatsci.2013.04.046.CrossRefGoogle Scholar
  52. 52.
    Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H. PETSc users manual. Technical report, 2013.Google Scholar
  53. 53.
    Kelley CT. Iterative methods for linear and nonlinear equations, Frontiers in applied mathematics, vol. 16. Philadelphia: Society for Industrial and Applied Mathematics; 1995. www.siam.org/books/textbooks/fr16_book.pdf.CrossRefGoogle Scholar
  54. 54.
    Oosterlee CW, Washio T. Krylov subspace acceleration of nonlinear multigrid with application to recirculating flows. SIAM J Sci Comput. 2000;21(5):1670–90.  https://doi.org/10.1137/S1064827598338093.MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Chen Y, Shen C. A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations. IEEE Trans Power Syst. 2006;21(3):1096–103.  https://doi.org/10.1109/TPWRS.2006.876696.CrossRefGoogle Scholar
  56. 56.
    Eisenstat SC, Walker HF. Choosing the forcing terms in an inexact Newton method. SIAM J Sci Comput. 1996;17(1):16–32.  https://doi.org/10.1137/0917003.MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Andreev VI, Cybin NY. The inhomogeneous plate with a hole: Kirsch’s problem. Procedia Eng. 2014;91:26–31.  https://doi.org/10.1016/j.proeng.2014.12.006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pratheek Shanthraj
    • 1
    • 3
  • Martin Diehl
    • 1
  • Philip Eisenlohr
    • 2
  • Franz Roters
    • 1
  • Dierk Raabe
    • 1
  1. 1.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  3. 3.The School of MaterialsThe University of ManchesterManchesterUK

Personalised recommendations