Multiscale Translation-Rotation Plastic Flow in Polycrystals

  • Victor E. PaninEmail author
  • Valerii E. Egorushkin
  • Tamara F. Elsukova
  • Natalya S. Surikova
  • Yurii I. Pochivalov
  • Alexey V. Panin
Living reference work entry


The problem of plastic shear propagation in conditions of high crystal lattice curvature has been researched theoretically and experimentally on the basis of the gauge theory. It has been shown that in conditions of high crystal lattice curvature, the flows of deformation defects reveal plastic distortion, vorticity of plastic shears, and the possibility of their non-crystallographic propagation by a shear banding. Experimental research on the mechanical behavior of the commercially pure Ti samples under alternating bending demonstrated the strong influence of their structural state on the development of high crystal lattice curvature and shear banding. The high crystal lattice curvature under a cyclic loading appears in the hydrogenated surface layers, where shear banding and microporosity develop and fatigue life is greatly reduced. High crystal lattice curvature in surface layer of Ti samples produced by ultrasonic processing determines the fourfold increase of Ti fatigue life. The translation-rotation deformation against developed grain boundary sliding in high-purity A999 Al polycrystals under creep and in A999 Al foils glued on commercial A7 Al plates under alternate bending was studied. The stage of steady-state creep provides intragranular sliding in the material mainly by dislocation mechanisms. The stage of tertiary creep causes multiscale fragmentation, non-crystallographic sliding, and fracture. Under alternate bending, the Al foils are involved in rotations by dislocation mechanisms only up to a strain of ~50%, and as they become highly corrugated, shear bands propagate in them. The observed shear banding provides the generation of elastoplastic rotations in zones of high lattice curvature.


Crystal lattice curvature Ti and Al polycrystals Fatigue fracture Creep Shear banding 


  1. 1.
    Hirth JP, Lothe J. Theory of dislocation. 2nd ed. New York: Wiley; 1981.zbMATHGoogle Scholar
  2. 2.
    Meyers MA, Chavla KK. Mechanical behaviours of materials. Upper Saddle River: Prentice Hall; 1999.Google Scholar
  3. 3.
    Courtney TR. Mechanical behaviour of materials. New York: МсGraw-Hill; 2000.Google Scholar
  4. 4.
    Cahn RW. The coming of materials science. Amsterdam: Elsevier; 2001.Google Scholar
  5. 5.
    Kröner E. Gauge field theories of defects in solids. Stuttgart: Max-Planck Institute; 1982.Google Scholar
  6. 6.
    Kadič A, Edelen DGB. A gauge theory of dislocations and Disclinations, Lecture notes in physics. Heidelberg: Springer-Verlag; 1983.zbMATHCrossRefGoogle Scholar
  7. 7.
    Edelen DGB, Lagoudas DC. Gauge theory and defects in solids. Amsterdam: North-Holland; 1988.zbMATHGoogle Scholar
  8. 8.
    Nabarro FRN. Report of a conference on the strength of solids. London: The Physical Society; 1948.Google Scholar
  9. 9.
    Herring C. Diffusional viscosity of a polycrystalline solid. J Appl Phys. 1950;21(5):437–45.CrossRefGoogle Scholar
  10. 10.
    Coble RL. A model for boundary diffusion controlled creep in poly crystalline materials. J Appl Phys. 1963;34(6):1679–82.CrossRefGoogle Scholar
  11. 11.
    Panin VE, Egorushkin VE, Panin AV. Nonlinear wave processes in a deformable solid as a multiscale hierarchically organized system. Physics-Uspekhi. 2012;55(12):1260–7.CrossRefGoogle Scholar
  12. 12.
    Panin VE, Egorushkin VE. Basic physical Mesomechanics of plastic deformation and fracture of solids as hierarchically organized nonlinear systems. Phys Mesomech. 2015;18(4):377–90.CrossRefGoogle Scholar
  13. 13.
    Panin VE, Egorushkin VE, Panin AV, Chernyavskii AG. Plastic distortion as a fundamental mechanism in nonlinear Mesomechanics of plastic deformation and fracture. Phys Mesomech. 2016;19(3):255–68.CrossRefGoogle Scholar
  14. 14.
    Matsunaga T, Kameyama T, Ueda S, Sato E. Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals. Philos Mag. 2010;90(30):4041–54.CrossRefGoogle Scholar
  15. 15.
    Ashby MF, Jones DRH. Engineering materials 1: an introduction to properties, applications and design. 3rd ed. Oxford: Butterworth-Heinemann; 2005.Google Scholar
  16. 16.
    Ashby MF, Jones DRH. Engineering materials 2: an introduction to microstructures, processing and design. 3rd ed. Oxford: Butterworth-Heinemann; 2005.Google Scholar
  17. 17.
    Sauzay M, Kubin LP. Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog Mater Sci. 2011;56(6):725–84.CrossRefGoogle Scholar
  18. 18.
    Kassner ME. Fundamentals of creep in metals and alloys. 2nd ed. Amsterdam: Elsevier; 2009.Google Scholar
  19. 19.
    Rusinko A, Rusinko K. Plasticity and creep of metals. New York: Springer; 2011.zbMATHCrossRefGoogle Scholar
  20. 20.
    Gifkins RC. Grain-boundary sliding and its accommodation during creep and superplasticity. Metallurg Mater Trans. 1976;7A(8):1225–32.CrossRefGoogle Scholar
  21. 21.
    Pham MS, Soltnthaler C, Janssens KGF, Holdsworth SR. Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel. Mater Sci Eng A. 2011;528:3261–9.CrossRefGoogle Scholar
  22. 22.
    Pham MS, Holdsworth SR, Janssens KGF, Mazza E. Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modeling. Int J Plast. 2013;47:143–64.CrossRefGoogle Scholar
  23. 23.
    Panin VE, Egorushkin VE, Elsukova TF. Physical Mesomechanics of grain boundary sliding in a deformable Polycrystal. Phys Mesomech. 2013;16(1):1–8.CrossRefGoogle Scholar
  24. 24.
    Lohmiller J, Grewer M, Braun C, Kobler A, Kübel C, Schüler K, Honkimäki V, Hahn H, Kraft O, Birringer R, Gruber PA. Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel. Acta Mater. 2014;65:295–307.CrossRefGoogle Scholar
  25. 25.
    Wadsworth J, Ruano OA, Sherby OD. Denuded zones, diffusional creep, and grain boundary sliding. Metall Mater Trans A. 2002;33А:219–29.CrossRefGoogle Scholar
  26. 26.
    Tsvikler W. Titan and Titanlegierungen. Berlin: Springer-Verlag; 1974.Google Scholar
  27. 27.
    Collings EW. The physical metallurgy of titanium alloys. American Society for Metals: Geauga County; 1984.Google Scholar
  28. 28.
    Laine SJ, Knowles KM. {11−24} deformation twinning in commercial purity titanium at room temperature. Philos Mag. 2015;95(20):2153–66.CrossRefGoogle Scholar
  29. 29.
    Panin AV, Panin VE, Chernov IP, YuI P, Kazachenok MS, Son AA, Valiev RZ, Kopylov VI. Effect of surface condition of ultrafine-grained Ti and α-Fe on their deformation and mechanical properties. Phys Mesomech. 2001;4(6):79–86.Google Scholar
  30. 30.
    Burdett J. Chemical bonds: a dialog. New York/Chichester: Wiley; 1997.Google Scholar
  31. 31.
    Hagena OF, Knop G, Linker G. Physics and chemistry of finite system: from clusters to crystals. Amsterdam: Kluwer Academic Publisher; 1992.Google Scholar
  32. 32.
    Haberland H, Insepov Z, Moseler M. Molecular-dynamics simulations of thin-film growth by energetic cluster impact. Phys Rev B. 1995;51(16):11061–7.CrossRefGoogle Scholar
  33. 33.
    Barut A, Raczka R. Theory of group representations and applications. Singapore: World Scientific Publishing; 1986.zbMATHCrossRefGoogle Scholar
  34. 34.
    Panin VE, Grinyaev YV, Egorushkin VE, Buchbinder LL, Kul’kov SN. Spectrum of excited states and rotational mechanical field in a deformed crystal. Sov Phys J. 1987;30(1):24–38.CrossRefGoogle Scholar
  35. 35.
    Onami M. Introduction to micromechanics. Moscow: Metallurgia; 1987.Google Scholar
  36. 36.
    Panin VE, Elsukova TF, Popkova YF. The role of curvature of the crystal structure in the formation of micropores and crack development under fatigue fracture of commercial titanium. Dokl Phys. 2013;58(11):472475.CrossRefGoogle Scholar
  37. 37.
    Panin VE, Egorushkin VE. Curvature solitons as generalized structural wave carriers of plastic deformation and fracture. Phys Mesomech. 2013;16(4):267–86.CrossRefGoogle Scholar
  38. 38.
    Hansen M, Anderko K. Constitution of binary alloys. New York: McGraw-Hill; 1958.Google Scholar
  39. 39.
    Demidenko VS, Zaitsev NL, Menschikova TV, Skorentsev LF. Precursor of the virtual b-phase in the electronic structure of a nanocluster in α-titanium. Phys Mesomech. 2006;9(3–4):51–6.Google Scholar
  40. 40.
    Cherepanov GP. On the theory of thermal stresses in thin bonding layer. J Appl Phys. 1995;78(11):6826–32.CrossRefGoogle Scholar
  41. 41.
    Honeycombe RWC. The plastic deformation of metals. London: Edward Arnold Publ. Ltd; 1968.Google Scholar
  42. 42.
    Tyumentsev AN, Ditenberg IA, Korotaev AD, Denisov KI. Lattice curvature evolution in metal materials on Meso- and Nanostructural scales of plastic deformation. Phys Mesomech. 2013;16(4):319–34.CrossRefGoogle Scholar
  43. 43.
    Panin VE, editor. Physical Mesomechanics of heterogeneous media and computer-aided Design of Materials. Cambridge: Cambridge International Science Publishers; 1998.Google Scholar
  44. 44.
    Tekoğlu C, Hutchinson JW, Pardoen T. On localization and void coalescence as a precursor to ductile fracture. Philos Trans R Soc. 2015;A373:20140121.CrossRefGoogle Scholar
  45. 45.
    Dobatkin SV, Zrnik J, Matuzic I. Nanostructures by severe plastic deformation of steels: advantage and problems. Metallurgia. 2006;45:313–21.Google Scholar
  46. 46.
    Andrievski RA, Glezer AM. Strength of nanostructures. Physics-Uspekhi. 2009;52(4):315–34.CrossRefGoogle Scholar
  47. 47.
    Lins JFC, Sandim HRZ, Kestenbach HJ, Raabe D, Vecchio KS. A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng. 2007;A457:205–18.CrossRefGoogle Scholar
  48. 48.
    Tyson JJ. The Belousov-Zhabotinsky reaction (lecture notes in biomathem). Berlin: Springer; 1976.CrossRefGoogle Scholar
  49. 49.
    Myasnikov VP. A geometrical model of the defect structure of an elastoplastic continuous medium. J Appl Mech Tech Phys. 1999;40(2):331–40.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Guzev MA, Dmitriev AA. Bifurcational behavior of potential energy in a particle system. Phys Mesomech. 2013;16(4):287–93.CrossRefGoogle Scholar
  51. 51.
    Maslov VP. Undistinguishing statistics of objectively distinguishable objects: thermodynamics and superfluidity of classical gas. Mathematical Notes. 2013;94:722–813.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Maslov VP. Mathematical aspects of weakly nonideal Bose and Fermi gases on a crystal base. Functional Analysis and Its Applications. 2003;37(2):16–27.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Victor E. Panin
    • 1
    • 2
    • 3
    Email author
  • Valerii E. Egorushkin
    • 1
  • Tamara F. Elsukova
    • 1
  • Natalya S. Surikova
    • 1
  • Yurii I. Pochivalov
    • 1
  • Alexey V. Panin
    • 1
    • 2
  1. 1.Institute of Strength Physics and Materials Science SB RASTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations