Advertisement

Monte Carlo Simulations of Precipitation Under Irradiation

  • Charlotte S. Becquart
  • Frédéric Soisson
Living reference work entry

Abstract

A tomistic kinetic Monte Carlo (AKMC) is a powerful technique to study the microstructural and microchemical evolution of alloys controlled by diffusion processes. AKMC simulations are thus ideal tools to study precipitation, under irradiation and during thermal aging. In this chapter, we briefly present the method, underlining the different hypotheses usually made in the studies which have been done so far and the increasing contribution of density functional theory (DFT) calculations. We then proceed to present several simulations of the first stages of precipitation that can be quantitatively compared with experimental studies, in order to show the complexity introduced by the irradiation. We move to the mesoscale and introduce event kinetic Monte Carlo (EKMC) and object kinetic Monte Carlo (OKMC) methods which until now have mostly dealt with point defect cluster distributions in pure metals or “gray alloys” and were thus not really appropriate to study precipitation. However, they can be coupled with AKMC to speed up the calculations and recent developments take into account solute atoms more explicitly. We expose then recent advances that relieve some of the simplifying assumptions of standard AKMC models and conclude with a few challenging issues that we feel need to be addressed to predict correctly the behavior of alloys under irradiation but have been barely introduced in the models.

Keywords

Kinetic Monte Carlo Kinetics of precipitation Irradiation effects Atomistic simulations 

Acronyms

ABC

Autonomous basin climbing

AKMC

Atomic kinetic Monte Carlo

ANN

Artificial neural network

bac-MRM

Basin auto-constructing mean rate method

CRP

Copper-rich precipitates

DFT

Density functional theory

EKMC

Event kinetic Monte Carlo

HSLA

High-strength low-alloy

KMC

Kinetic Monte Carlo

NEB

Nudged elastic band

ODS

Oxide dispersion strengthened

OKMC

Object kinetic Monte Carlo

PD

Protective domain

RIP

Radiation-induced precipitation

RIS

Radiation-induced segregation

RPV

Reactor pressure vessel

SIA

Self-interstitial atom

References

  1. 1.
    Russell KC. Phase stability under irradiation. Prog Mater Sci. 1984;28:229–434.CrossRefGoogle Scholar
  2. 2.
    Was GS. Fundamentals of radiation materials science: metals and alloys. Berlin/Heidelberg: Springer Berlin Heidelberg; 2007. p. 433–90.Google Scholar
  3. 3.
    Martin G, Bellon P. Driven alloys. In: Spaepen F, Ehrenreich H, editors. Solid state physics. New York: Academic Press; 1996. p. 189–331.Google Scholar
  4. 4.
    Averback RS, de la Rubia TD. Displacement damage in irradiated metals and semiconductors. In: Spaepen F, Ehrenreich H, editors. Solid state physics. New York: Academic Press; 1998. p. 281–402.Google Scholar
  5. 5.
    Soisson F, Becquart CS, Castin N, Domain C, Malerba L, Vincent E. Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation. J Nucl Mater. 2010;406:55–67.CrossRefGoogle Scholar
  6. 6.
    Becquart CS, Domain C. Introducing chemistry in atomistic kinetic Monte Carlo simulations of Fe alloys under irradiation. Phys Status Solidi B. 2010;247:9–22.  https://doi.org/10.1002/pssb.200945251.
  7. 7.
    Becquart CS, Wirth BD. Kinetic Monte Carlo simulations of irradiation effects. Compr Nucl Mater Elsevier. 2012:393–410.Google Scholar
  8. 8.
    Landau DP, Binder K. A guide to Monte Carlo simulations in statistical physics. Cambridge: Cambridge University Press; 2000.zbMATHGoogle Scholar
  9. 9.
    Young WM, Elcock EW. Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc Phys Soc. 1966;89:735–46.CrossRefGoogle Scholar
  10. 10.
    Bortz AB, Kalos MH, Lebowitz JL. A new algorithm for Monte Carlo simulation of Ising spin systems. J Comput Phys. 1975;17:10–8.CrossRefGoogle Scholar
  11. 11.
    Müller S, Wang L-W, Zunger A. First-principles kinetic theory of precipitate evolution in Al-Zn alloys. Model Simul Mater Sci Eng. 2002;10:131–45.CrossRefGoogle Scholar
  12. 12.
    Varvenne C, Finel A, Le Bouar Y, Fèvre M. Alloy microstructures with atomic size effects: a Monte Carlo study under the lattice statics formalism. Phys Rev B. 2012;86:184203.CrossRefGoogle Scholar
  13. 13.
    Vineyard GH. Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids. 1957;3:121–7.CrossRefGoogle Scholar
  14. 14.
    Voter AF. Introduction to the kinetic Monte Carlo method. In: Radiation effects in solids. Dordrecht: Springer; 2007. p. 1–23.Google Scholar
  15. 15.
    Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901.CrossRefGoogle Scholar
  16. 16.
    Henkelman G, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys. 1999;111:7010.CrossRefGoogle Scholar
  17. 17.
    Fan Y, Kushima A, Yildiz B. Unfaulting mechanism of trapped self-interstitial atom clusters in bcc Fe: a kinetic study based on the potential energy landscape. Phys Rev B. 2010;81:104102.CrossRefGoogle Scholar
  18. 18.
    Barkema GT, Mousseau N. Event-based relaxation of continuous disordered systems. Phys Rev Lett. 1996;77:4358–61.CrossRefGoogle Scholar
  19. 19.
    El-Mellouhi F, Mousseau N, Lewis LJ. Kinetic activation-relaxation technique: an off-lattice self-learning kinetic Monte Carlo algorithm. Phys Rev B. 2008;78:153202.CrossRefGoogle Scholar
  20. 20.
    Mantina M, Wang Y, Arroyave R, Chen LQ, Liu ZK, Wolverton C. First-principles calculation of self-diffusion coefficients. Phys Rev Lett. 2008;100:215901.CrossRefGoogle Scholar
  21. 21.
    Huang S, Worthington DL, Asta M, Ozolins V, Ghosh G, Liaw PK. Calculation of impurity diffusivities in α-Fe using first-principles methods. Acta Mater. 2010;58:1982–93.CrossRefGoogle Scholar
  22. 22.
    Ganeshan S, Hector LG Jr, Liu Z-K. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model. Acta Mater. 2011;59:3214–28.CrossRefGoogle Scholar
  23. 23.
    Messina L, Nastar M, Garnier T, Domain C, Olsson P. Exact ab initio transport coefficients in bcc Fe-X (X=Cr,Cu,Mn,Ni,P,Si) dilute alloys. Phys Rev B. 2014;90:104203.CrossRefGoogle Scholar
  24. 24.
    Bocquet JL. On-the-fly evaluation of diffusional parameters during a Monte Carlo simulation of diffusion in alloys: a challenge. In: Defect and diffusion forum. Zürich: Trans Tech Publications; 2002. p. 81–112.Google Scholar
  25. 25.
    Senninger O, Martínez E, Soisson F, Nastar M, Bréchet Y. Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: influence of magnetism. Acta Mater. 2014;73:97–106.CrossRefGoogle Scholar
  26. 26.
    Huang C-H, Marian J. A generalized Ising model for studying alloy evolution under irradiation and its use in kinetic Monte Carlo simulations. J Phys Condens Matter. 2016;28:425201.CrossRefGoogle Scholar
  27. 27.
    Martínez E, Senninger O, Fu C-C, Soisson F. Decomposition kinetics of Fe-Cr solid solutions during thermal aging. Phys Rev B. 2012;86:224109.CrossRefGoogle Scholar
  28. 28.
    Kang HC, Weinberg WH. Dynamic Monte Carlo with a proper energy barrier: surface diffusion and two-dimensional domain ordering. J Chem Phys. 1989;90:2824.CrossRefGoogle Scholar
  29. 29.
    Vincent E, Becquart CS, Pareige C, Pareige P, Domain C. Precipitation of the FeCu system: a critical review of atomic kinetic Monte Carlo simulations. J Nucl Mater. 2008;373:387–401.CrossRefGoogle Scholar
  30. 30.
    Costa D, Adjanor G, Becquart CS, Olsson P, Domain C. Vacancy migration energy dependence on local chemical environment in Fe-Cr alloys: a density functional theory study. J Nucl Mater. 2014;452:425–33.CrossRefGoogle Scholar
  31. 31.
    Bouar YL, Soisson F. Kinetic pathways from embedded-atom-method potentials: influence of the activation barriers. Phys Rev B. 2002;65:94103.CrossRefGoogle Scholar
  32. 32.
    Nastar M, Soisson F. Atomistic modeling of phase transformations: point-defect concentrations and the time-scale problem. Phys Rev B. 2012;86:220102.CrossRefGoogle Scholar
  33. 33.
    Allnatt AR, Lidiard AB. Atomic transport in solids. Cambridge: Cambridge University Press; 2003.Google Scholar
  34. 34.
    Clouet E, Laé L, Épicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multicomponent alloys. Nat Mater. 2006;5:482–8.CrossRefGoogle Scholar
  35. 35.
    Dhua SK, Ray A, Sarma DS. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels. Mater Sci Eng A. 2001;318:197–210.CrossRefGoogle Scholar
  36. 36.
    Othen PJ, Jenkins ML, GDW S. High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Philos Mag A. 1994;70:1–24.CrossRefGoogle Scholar
  37. 37.
    Soisson F, Barbu A, Martin G. Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation. Acta Mater. 1996;44:3789–800.CrossRefGoogle Scholar
  38. 38.
    Schmauder S, Binkele P. Atomistic computer simulation of the formation of Cu-precipitates in steels. Comput Mater Sci. 2002;24:42–53.CrossRefGoogle Scholar
  39. 39.
    Vincent E, Becquart CS, Domain C. Solute interaction with point defects in α Fe during thermal ageing: a combined ab initio and atomic kinetic Monte Carlo approach. J Nucl Mater. 2006;351:88–99.CrossRefGoogle Scholar
  40. 40.
    Soisson F, Fu C-C. Cu-precipitation kinetics in α- Fe from atomistic simulations: vacancy-trapping effects and Cu-cluster mobility. Phys Rev B. 2007;76:214102.CrossRefGoogle Scholar
  41. 41.
    Liu CL, Odette GR, Wirth BD, Lucas GE. A lattice Monte Carlo simulation of nanophase compositions and structures in irradiated pressure vessel Fe-Cu-Ni-Mn-Si steels. Mater Sci Eng A. 1997;238:202–9.CrossRefGoogle Scholar
  42. 42.
    Bonny G, Pasianot RC, Castin N, Malerba L. Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Philos Mag. 2009;89:3531–46.CrossRefGoogle Scholar
  43. 43.
    Clouet E, Barbu A, Laé L, Martin G. Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics. Acta Mater. 2005;53:2313–25.CrossRefGoogle Scholar
  44. 44.
    Bonny G, Terentyev D, Malerba L, Van Neck D. Early stages of α-α’ phase separation in Fe-Cr alloys: an atomistic study. Phys Rev B. 2009;79:104207.CrossRefGoogle Scholar
  45. 45.
    Pareige C, Domain C, Olsson P. Short- and long-range orders in Fe-Cr: a Monte Carlo study. J Appl Phys. 2009;106:104906.CrossRefGoogle Scholar
  46. 46.
    Pareige C, Roussel M, Novy S, Kuksenko V, Olsson P, Domain C, Pareige P. Kinetic study of phase transformation in a highly concentrated Fe-Cr alloy: Monte Carlo simulation versus experiments. Acta Mater. 2011;59:2404–11.CrossRefGoogle Scholar
  47. 47.
    Pareige C, Soisson F, Martin G, Blavette D. Ordering and phase separation in Ni–Cr–Al: Monte Carlo simulations vs three-dimensional atom probe. Acta Mater. 1999;47:1889–99.CrossRefGoogle Scholar
  48. 48.
    Mao Z, Sudbrack CK, Yoon KE, Martin G, Seidman DN. The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat Mater. 2007;6:210–6.CrossRefGoogle Scholar
  49. 49.
    Domain C, Becquart CS, van Duysen JC. Kinetic Monte Carlo simulations of cascades in Fe alloys. MRS Online Proc Libr Arch. 2000.  https://doi.org/10.1557/PROC-650-R3.25.
  50. 50.
    Sizmann R. The effect of radiation upon diffusion in metals. J Nucl Mater. 1978;69:386–412.CrossRefGoogle Scholar
  51. 51.
    Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M, Mori H. Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science. 2007;318:956–9.CrossRefGoogle Scholar
  52. 52.
    Soisson F, Jourdan T. Radiation-accelerated precipitation in Fe-Cr alloys. Acta Mater. 2016;103:870–81.CrossRefGoogle Scholar
  53. 53.
    Meslin E, Soisson F, Tissot O. In preparation. 2017.Google Scholar
  54. 54.
    Enrique RA, Bellon P. Compositional patterning in immiscible alloys driven by irradiation. Phys Rev B. 2001;63:134111.CrossRefGoogle Scholar
  55. 55.
    Soisson F. Kinetic Monte Carlo simulations of radiation induced segregation and precipitation. J Nucl Mater. 2006;349:235–50.CrossRefGoogle Scholar
  56. 56.
    Senninger O, Soisson F, Martínez E, Nastar M, Fu C-C, Bréchet Y. Modeling radiation induced segregation in iron–chromium alloys. Acta Mater. 2016;103:1–11.CrossRefGoogle Scholar
  57. 57.
    Hardie CD, Williams CA, Xu S, Roberts SG. Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted Fe and Fe-Cr alloys. J Nucl Mater. 2013;439:33–40.CrossRefGoogle Scholar
  58. 58.
    Bhattacharya A, Meslin E, Henry J, Pareige C, Décamps B, Genevois C, Brimbal D, Barbu A. Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe-Cr alloys. Acta Mater. 2014;78:394–403.CrossRefGoogle Scholar
  59. 59.
    Huang C-H, Gharaee L, Zhao Y, Erhart P, Marian J. Mechanism of nucleation and incipient growth of Re clusters in irradiated W-Re alloys from kinetic Monte Carlo simulations. Phys. Rev. B 2017; 96, 094108.Google Scholar
  60. 60.
    Vincent E, Becquart CS, Domain C. Atomic kinetic Monte Carlo model based on ab initio data: simulation of microstructural evolution under irradiation of dilute Fe–CuNiMnSi alloys. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2007;255:78–84.CrossRefGoogle Scholar
  61. 61.
    Potter DI, McCormick AW. Irradiation-enhanced coarsening in Ni-12.8 at.% Al. Acta Metall. 1979;27:933–41.CrossRefGoogle Scholar
  62. 62.
    Odette GR, Nanstad RK. Predictive reactor pressure vessel steel irradiation embrittlement models: issues and opportunities. JOM. 2009;61:17–23.CrossRefGoogle Scholar
  63. 63.
    Ngayam-Happy R, Becquart CS, Domain C, Malerba L. Formation and evolution of MnNi clusters in neutron irradiated dilute Fe alloys modelled by a first principle-based AKMC method. J Nucl Mater. 2012;426:198–207.CrossRefGoogle Scholar
  64. 64.
    Bonny G, Terentyev D, Bakaev A, Zhurkin EE, Hou M, Van Neck D, Malerba L. On the thermal stability of late blooming phases in reactor pressure vessel steels: an atomistic study. J Nucl Mater. 2013;442:282–91.CrossRefGoogle Scholar
  65. 65.
    Odette GR, Alinger MJ, Wirth BD. Recent developments in irradiation-resistant steels. Annu Rev Mater Res. 2008;38:471–503.CrossRefGoogle Scholar
  66. 66.
    Wharry JP, Swenson MJ, Yano KH. A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: current understanding and future directions. J Nucl Mater. 2017;486:11–20.CrossRefGoogle Scholar
  67. 67.
    Hin C, Wirth BD. Formation of oxide nanoclusters in nanostructured ferritic alloys during anisothermal heat treatment: a kinetic Monte Carlo study. Mater Sci Eng A. 2011;528:2056–61.CrossRefGoogle Scholar
  68. 68.
    Chiapetto M, Malerba L, Becquart CS. Nanostructure evolution under irradiation in FeMnNi alloys: a “grey alloy” object kinetic Monte Carlo model. J Nucl Mater. 2015;462:91–9.CrossRefGoogle Scholar
  69. 69.
    Chiapetto M, Malerba L, Becquart CS. Effect of Cr content on the nanostructural evolution of irradiated ferritic/martensitic alloys: an object kinetic Monte Carlo model. J Nucl Mater. 2015;465:326–36.CrossRefGoogle Scholar
  70. 70.
    Castin N, Chiapetto M, Messina L, Malerba L. In preparation. 2017.Google Scholar
  71. 71.
    Castin N, Pascuet MI, Malerba L. Modeling the first stages of Cu precipitation in α-Fe using a hybrid atomistic kinetic Monte Carlo approach. J Chem Phys. 2011;135:64502.CrossRefGoogle Scholar
  72. 72.
    Pannier B. Towards the prediction of microstructure evolution under irradiation of model ferritic alloys with an hybrid AKMC-OKMC approach. Lille: Université Lille; 2017.Google Scholar
  73. 73.
    Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B, Schmauder S. Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations. Acta Mater. 2012;60:6961–71.CrossRefGoogle Scholar
  74. 74.
    Mason DR, Rudd RE, Sutton AP. Atomistic modelling of diffusional phase transformations with elastic strain. J Phys Condens Matter. 2004;16:S2679.CrossRefGoogle Scholar
  75. 75.
    Trochet M, Béland LK, Joly J-F, Brommer P, Mousseau N. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method. Phys Rev B. 2015;91:224106.CrossRefGoogle Scholar
  76. 76.
    Henkelman G, Jónsson H. Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys. 2001;115:9657.CrossRefGoogle Scholar
  77. 77.
    Castin N, Fernández JR, Pasianot RC. Predicting vacancy migration energies in lattice-free environments using artificial neural networks. Comput Mater Sci. 2014;84:217–25.CrossRefGoogle Scholar
  78. 78.
    Messina L, Nastar M, Sandberg N, Olsson P. Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron. Phys Rev B. 2016;93:184302.CrossRefGoogle Scholar
  79. 79.
    Ding H, Razumovskiy VI, Asta M. Self diffusion anomaly in ferromagnetic metals: a density-functional-theory investigation of magnetically ordered and disordered Fe and Co. Acta Mater. 2014;70:130–6.CrossRefGoogle Scholar
  80. 80.
    Lazauskas T, Kenny SD, Smith R. Influence of the prefactor to defect motion in α -Iron during long time scale simulations. J Phys Condens Matter. 2014;26:395007.CrossRefGoogle Scholar
  81. 81.
    Maydet SI, Russell KC. Precipitate stability under irradiation: point defect effects. J Nucl Mater. 1977;64:101–14.CrossRefGoogle Scholar
  82. 82.
    Mason DR, Rudd RE, Sutton AP. Atomistic modelling of diffusional phase transformations with elastic strain. J Phys Condens Matter. 2004;16:S2679.CrossRefGoogle Scholar
  83. 83.
    Joshi K, Chaudhuri S. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al–Cu alloys. Model Simul Mater Sci Eng. 2016;24:75012.CrossRefGoogle Scholar
  84. 84.
    Djurabekova FG, Domingos R, Cerchiara G, Castin N, Vincent E, Malerba L. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe-Cu alloys. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2007;255:8–12.CrossRefGoogle Scholar
  85. 85.
    Castin N, Malerba L, Bonny G, Pascuet MI, Hou M. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2009;267:3002–8.CrossRefGoogle Scholar
  86. 86.
    Opplestrup T, Bulatov VV, Gilmer GH, Kalos MH, Sadigh B. First-passage Monte Carlo algorithm: diffusion without all the hops. Phys Rev Lett. 2006;97:230602.CrossRefGoogle Scholar
  87. 87.
    Béland LK, Brommer P, El-Mellouhi F, Joly J-F, Mousseau N. Kinetic activation-relaxation technique. Phys Rev E. 2011;84:46704.CrossRefGoogle Scholar
  88. 88.
    Athènes M, Bulatov VV. Path factorization approach to stochastic simulations. Phys Rev Lett. 2014;113:230601.CrossRefGoogle Scholar
  89. 89.
    Shim Y, Amar JG. Hybrid asynchronous algorithm for parallel kinetic Monte Carlo simulations of thin film growth. J Comput Phys. 2006;212:305–17.CrossRefzbMATHGoogle Scholar
  90. 90.
    Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B. 2012;85:184203.CrossRefGoogle Scholar
  91. 91.
    Arampatzis G, Katsoulakis MA, Plecháč P, Taufer M, Xu L. Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms. J Comput Phys. 2012;231:7795–814.MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Esteves A, Moura A. Distributed memory implementation strategies for the kinetic Monte Carlo algorithm. New York: ACM Press; 2016. p. 130–9.Google Scholar
  93. 93.
    Martínez E, Marian J, Kalos MH, Perlado JM. Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J Comput Phys. 2008;227:3804–23.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.CNRS, INRA, ENSCL, UMR 8207, UMET, Unité Matériaux et TransformationsUniversity of LilleLilleFrance
  2. 2.DEN-Service de Recherches de Métallurgie Physique, CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations