Atomistic Modeling of Radiation Damage in Metallic Alloys

  • Charlotte S. Becquart
  • Andrée De Backer
  • Christophe Domain
Living reference work entry


The primary damage in metallic alloys, i.e., the point defect distribution resulting from the interaction between an energetic particle and a metallic matrix has been investigated for more than 60 years using atomistic simulations. In this chapter, we present an overview of the techniques used as well as the results achieved so far to conclude on the open questions and future directions.


Radiation damage Primary damage Displacement cascades Primary knock-on atom Metallic alloys 



Two temperature molecular dynamics


Binary collision approximation


body-centered cubic


displacement per atom


face-centered cubic


Embedded atom method


Electron phonon coupling


Frenkel pairs


Grain boundary


hexagonal close packed


Kinetic Monte Carlo


Molecular dynamics


Mean field rate theory


Mean square displacement


Norgett Robinson Torrens


Primary knock-on atom


Replacement collision sequence


Self-interstitial atoms


Secondary knock-on atom


Threshold displacement energies


Transmission electron microscope



This work was partly supported within the European project SOTERIA (661913) and by CEA under the collaborative contract number V 3542.001 on fusion engineering issues. It contributes to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA).


  1. 1.
    Becquart CS, Domain C. Modeling microstructure and irradiation effects. Metall Mater Trans A. 2011;42:852–70.CrossRefGoogle Scholar
  2. 2.
    Eckstein W. Computer simulation of ion-solid interactions. 1991.
  3. 3.
    Max Planck Society – eDoc Server. Accessed 4 Feb 2017.
  4. 4.
    Robinson MT. Slowing-down time of energetic atoms in solids. Phys Rev B. 1989;40:10717–26.CrossRefGoogle Scholar
  5. 5.
    The MDRANGE (<tt>mdh</tt>) program. Accessed 4 Feb 2017.
  6. 6.
    DART-V.1, displacement per atom, primary knocked-on atoms produced in an atomic solid target. Accessed 4 Feb 2017.
  7. 7.
    Hou M, Ortiz CJ, Becquart CS, Domain C, Sarkar U, Debacker A. Microstructure evolution of irradiated tungsten: crystal effects in He and H implantation as modelled in the Binary Collision Approximation. J Nucl Mater. 2010;403:89–100.CrossRefGoogle Scholar
  8. 8.
    Ortiz CJ, Souidi A, Becquart CS, Domain C, Hou M. Recent radiation damage studies and developments of the Marlowe code. Radiat Eff Defects Solids. 2014;169:592–602.CrossRefGoogle Scholar
  9. 9.
    De Backer A, Sand A, Ortiz CJ, Domain C, Olsson P, Berthod E, Becquart CS. Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory. Phys Scr. 2016;T167:014018.CrossRefGoogle Scholar
  10. 10.
    Nordlund K, Djurabekova F, Hobler G. Large fraction of crystal directions leads to ion channeling. Phys Rev B. 2016.
  11. 11.
    Heinisch HL, Singh BN. On the structure of irradiation-induced collision cascades in metals as a function of recoil energy and crystal structure. Philos Mag A. 1993;67:407–24.CrossRefGoogle Scholar
  12. 12.
    Ryazanov AI, Metelkin EV, Semenov EV. Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials. J Nucl Mater. 2009;386–388:132–4.CrossRefGoogle Scholar
  13. 13.
    Simeone D, Luneville L, Serruys Y. Cascade fragmentation under ion beam irradiation: a fractal approach. Phys Rev E. 2010.
  14. 14.
    De Backer A, Sand AE, Nordlund K, Luneville L, Simeone D, Dudarev SL. Subcascade formation and defect cluster size scaling in high-energy collision events in metals. EPL Europhys Lett. 2016;115:26001.CrossRefGoogle Scholar
  15. 15.
    Development O for EC-O. Primary Radiation Damage in Materials. Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate in Cascade Defect Production Efficiency and Mixing Effects. Organisation for Economic Co-Operation and Development. 2015.Google Scholar
  16. 16.
    Stoller RE, Toloczko MB, Was GS, Certain AG, Dwaraknath S, Garner FA. On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2013;310:75–80.CrossRefGoogle Scholar
  17. 17.
    Gibson JB, Goland AN, Milgram M, Vineyard GH. Dynamics of radiation damage. Phys Rev. 1960;120:1229–53.CrossRefGoogle Scholar
  18. 18.
    Becquart CS, Decker KM, Domain C, Ruste J, Souffez Y, Turbatte JC, Van Duysen JC. Massively parallel molecular dynamics simulations with EAM potentials. Radiat Eff Defects Solids. 1997;142:9–21.CrossRefGoogle Scholar
  19. 19.
    Ziegler J, Littmark U, Biersack JP. The stopping range of ions in solids. In: Stopping Range Ions Solids. New York: Pergamon Press; 1985.Google Scholar
  20. 20.
    Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29:6443–53.CrossRefGoogle Scholar
  21. 21.
    Malerba L, Perlado JM. Basic mechanisms of atomic displacement production in cubic silicon carbide: a molecular dynamics study. Phys Rev B. 2002.
  22. 22.
    Erginsoy C, Vineyard GH, Englert A. Dynamics of radiation damage in a body-centered cubic lattice. Phys Rev. 1964;133:A595–606.CrossRefGoogle Scholar
  23. 23.
    Nordlund K, Wallenius J, Malerba L. Molecular dynamics simulations of threshold displacement energies in Fe. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2006;246:322–32.CrossRefGoogle Scholar
  24. 24.
    Becquart C, Domain C, Legris A, Van Duysen J. Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades. J Nucl Mater. 2000;280:73–85.CrossRefGoogle Scholar
  25. 25.
    Becquart CS, Souidi A, Hou M. Relation between the interaction potential, replacement collision sequences, and collision cascade expansion in iron. Phys Rev B. 2002.
  26. 26.
    Sand AE, Dequeker J, Becquart CS, Domain C, Nordlund K. Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten. J Nucl Mater. 2016;470:119–27.CrossRefGoogle Scholar
  27. 27.
    Stoller RE, Tamm A, Béland LK, et al. Impact of short-range forces on defect production from high-energy collisions. J Chem Theory Comput. 2016;12:2871–9.CrossRefGoogle Scholar
  28. 28.
    Lindhard J, Scharff M. Energy dissipation by ions in the kev Region. Phys Rev. 1961;124:128–30.CrossRefGoogle Scholar
  29. 29.
    Stoller RE, Greenwood LR. Subcascade formation in displacement cascade simulations: implications for fusion reactor materials. J Nucl Mater. 1999;271–272:57–62.CrossRefGoogle Scholar
  30. 30.
    Stoller RE, Odette GR, Wirth BD. Primary damage formation in bcc iron. J Nucl Mater. 1997;251:49–60.CrossRefGoogle Scholar
  31. 31.
    Ackland GJ, Mendelev MI, Srolovitz DJ, Han S, Barashev AV. Development of an interatomic potential for phosphorus impurities in -iron. J Phys Condens Matter. 2004;16:S2629–42.CrossRefGoogle Scholar
  32. 32.
    Mishin Y. Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater. 2004;52:1451–67.CrossRefGoogle Scholar
  33. 33.
    Mendelev MI, Ackland GJ. Development of an interatomic potential for the simulation of phase transformations in zirconium. Philos Mag Lett. 2007;87:349–59.CrossRefGoogle Scholar
  34. 34.
    Bacon DJ, Calder AF, Gao F, Kapinos VG, Wooding SJ. Computer simulation of defect production by displacement cascades in metals. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 1995;102:37–46.CrossRefGoogle Scholar
  35. 35.
    Becquart CS, Domain C. Molecular dynamics simulations of damage and plasticity: the role of ab initio calculations in the development of interatomic potentials. Philos Mag. 2009;89:3215–34.CrossRefGoogle Scholar
  36. 36.
    Stoller RE. Primary radiation damage formation. In: Comprehensive Nuclear Materials. Oxford: Elsevier; 2012. p. 293–332.CrossRefGoogle Scholar
  37. 37.
    Setyawan W, Selby AP, Juslin N, Stoller RE, Wirth BD, Kurtz RJ. Cascade morphology transition in bcc metals. J Phys Condens Matter. 2015;27:225402.CrossRefGoogle Scholar
  38. 38.
    Bacon DJ, Gao F, Osetsky YN. The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J Nucl Mater. 2000;276:1–12.CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Stocks GM, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun. 2015;6:8736.CrossRefGoogle Scholar
  40. 40.
    Béland LK, Osetsky YN, Stoller RE. The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades. Acta Mater. 2016;116:136–42.CrossRefGoogle Scholar
  41. 41.
    Zhao S, Velisa G, Xue H, Bei H, Weber WJ, Zhang Y. Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Mater. 2017;125:231–7.CrossRefGoogle Scholar
  42. 42.
    Crocombette J-P, Van Brutzel L, Simeone D, Luneville L. Molecular dynamics simulations of high energy cascade in ordered alloys: defect production and subcascade division. J Nucl Mater. 2016;474:134–42.CrossRefGoogle Scholar
  43. 43.
    Jumel S, Claude Van-Duysen J. INCAS: an analytical model to describe displacement cascades. J Nucl Mater. 2004;328:151–64.CrossRefGoogle Scholar
  44. 44.
    Hou M. Fuzzy clustering methods: an application to atomic displacement cascades in solids. Phys Rev A. 1989;39:2817–28.CrossRefGoogle Scholar
  45. 45.
    Chandrasekhar S. Stochastic problems in physics and astronomy. Rev Mod Phys. 1943;15:1–89.MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    De Backer A. work in progress.Google Scholar
  47. 47.
    Jumel S, Van-Duysen JC. RPV-1: a Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels. J Nucl Mater. 2005;340:125–48.CrossRefGoogle Scholar
  48. 48.
    Norgett MJ, Robinson MT, Torrens IM. A proposed method of calculating displacement dose rates. Nucl Eng Des. 1975;33:50–4.CrossRefGoogle Scholar
  49. 49.
    ASTM E693. E 693 Annual Book of ASTM standards. Annu. Book ASTM Stand. 12.02.1994.Google Scholar
  50. 50.
    Stoller R, Calder A. Statistical analysis of a library of molecular dynamics cascade simulations in iron at 100 K. J Nucl Mater. 2000;283–287:746–52.CrossRefGoogle Scholar
  51. 51.
    Sand AE, Aliaga MJ, Caturla MJ, Nordlund K. Surface effects and statistical laws of defects in primary radiation damage: tungsten vs. iron. EPL Europhys Lett. 2016;115:36001.CrossRefGoogle Scholar
  52. 52.
    Sand AE, Dudarev SL, Nordlund K. High-energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws. EPL Europhys Lett. 2013;103:46003.CrossRefGoogle Scholar
  53. 53.
    Zarkadoula E, Duffy DM, Nordlund K, Seaton MA, Todorov IT, Weber WJ, Trachenko K. Electronic effects in high-energy radiation damage in tungsten. J Phys Condens Matter. 2015;27:135401.CrossRefGoogle Scholar
  54. 54.
    Race CP, Mason DR, Finnis MW, Foulkes WMC, Horsfield AP, Sutton AP. The treatment of electronic excitations in atomistic models of radiation damage in metals. Rep Prog Phys. 2010;73:116501.CrossRefGoogle Scholar
  55. 55.
    Björkas C, Nordlund K. Assessment of the relation between ion beam mixing, electron–phonon coupling and damage production in Fe. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2009;267:1830–6.CrossRefGoogle Scholar
  56. 56.
    Zarkadoula E, Daraszewicz SL, Duffy DM, Seaton MA, Todorov IT, Nordlund K, Dove MT, Trachenko K. Electronic effects in high-energy radiation damage in iron. J Phys Condens Matter. 2014;26:085401.CrossRefGoogle Scholar
  57. 57.
    Duffy DM, Khakshouri S, Rutherford AM. Electronic effects in radiation damage simulations. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2009;267:3050–4.CrossRefGoogle Scholar
  58. 58.
    Duffy DM, Rutherford AM. Including electronic effects in damage cascade simulations. J Nucl Mater. 2009;386–388:19–21.CrossRefGoogle Scholar
  59. 59.
    Samolyuk GD, Béland LK, Stocks GM, Stoller RE. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling. J Phys Condens Matter. 2016;28:175501.CrossRefGoogle Scholar
  60. 60.
    Khakshouri S, Duffy DM. Influence of electronic effects on the surface erosion of tungsten. Phys Rev B. 2009.
  61. 61.
    Phythian WJ, Stoller RE, Foreman AJE, Calder AF, Bacon DJ. A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J Nucl Mater. 1995;223:245–61.CrossRefGoogle Scholar
  62. 62.
    Gao F, Bacon DJ, Flewitt PEJ, Lewis TA. A molecular dynamics study of temperature effects on defect production by displacement cascades in α-iron. J Nucl Mater. 1997;249:77–86.CrossRefGoogle Scholar
  63. 63.
    Messina L, Nastar M, Sandberg N, Olsson P. Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron. Phys Rev B. 2016.
  64. 64.
    Hasnaoui A, Van Swygenhoven H, Derlet P. On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation. Acta Mater. 2002;50:3927–39.CrossRefGoogle Scholar
  65. 65.
    Veiga RGA, Perez M, Becquart CS, Domain C, Garruchet S. Effect of the stress field of an edge dislocation on carbon diffusion in α -iron: coupling molecular statics and atomistic kinetic Monte Carlo. Phys Rev B. 2010.
  66. 66.
    Al Tooq Z, Kenny SD. Modelling radiation damage at grain boundaries in fcc Nickel and Ni-based alloy using long time scale dynamics techniques. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2013;303:9–13.CrossRefGoogle Scholar
  67. 67.
    Capps N. Molecular dynamics simulations of cascade evolution near pre-existing defects. Masters Theses. University of Tennessee, 2013.Google Scholar
  68. 68.
    Satoh Y, Matsui H, Hamaoka T. Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation. Phys Rev B. 2008;97(9):638–656.
  69. 69.
    Satoh Y, Sohtome T, Abe H, Matsukawa Y, Kano S. Athermal migration of vacancies in iron and copper induced by electron irradiation. Philos Mag. 2017;97:638–656.Google Scholar
  70. 70.
    Korchuganov AV, Chernov VM, Zolnikov KP, Kryzhevich DS, Psakhie SG. MD simulation of primary radiation damage in metals with internal structure. Inorg Mater Appl Res. 2016;7:648–57.CrossRefGoogle Scholar
  71. 71.
    Osetsky Y, Bacon D. Atomic-scale modelling of primary damage and properties of radiation defects in metals. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2003;202:31–43.CrossRefGoogle Scholar
  72. 72.
    Nordlund K, Keinonen J, Ghaly M, Averback RS. Coherent displacement of atoms during ion irradiation. Nature. 1999;398:49–51.CrossRefGoogle Scholar
  73. 73.
    Stoller RE. The effect of free surfaces on cascade damage production in iron. J Nucl Mater. 2002;307–311:935–40.CrossRefGoogle Scholar
  74. 74.
    Aliaga MJ, Dopico I, Martin-Bragado I, Caturla MJ. Influence of free surfaces on microstructure evolution of radiation damage in Fe from molecular dynamics and object kinetic Monte Carlo calculations: influence of free surfaces on microstructure evolution of radiation damage in Fe. Phys Status Solidi A. 2016;213:2969–73.CrossRefGoogle Scholar
  75. 75.
    Masters BC. Dislocation loops in irradiated iron. Philos Mag. 1965;11:881–93.CrossRefGoogle Scholar
  76. 76.
    Yao Z, Hernández-Mayoral M, Jenkins ML, Kirk MA. Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: damage evolution in thin-foils at lower doses. Philos Mag. 2008;88:2851–80.CrossRefGoogle Scholar
  77. 77.
    Brimbal D, Décamps B, Henry J, Meslin E, Barbu A. Single- and dual-beam in situ irradiations of high-purity iron in a transmission electron microscope: effects of heavy ion irradiation and helium injection. Acta Mater. 2014;64:391–401.CrossRefGoogle Scholar
  78. 78.
    Xu H, Stoller RE, Osetsky YN, Terentyev D. Solving the puzzle of 〈100〉 interstitial loop formation in bcc iron. Phys Rev Lett. 2013.
  79. 79.
    Kirsanov VV, Kislitsin SB, Kislitsina EM. Atom – atom collision cascades in non-uniformly stressed metals. Philos Mag A. 1991;64:201–11.CrossRefGoogle Scholar
  80. 80.
    Gao F, Bacon D, Flewitt PE, Lewis T. The influence of strain on defect generation by displacement cascades in α-iron. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2001;180:187–93.CrossRefGoogle Scholar
  81. 81.
    Wang D, Gao N, Wang ZG, Gao X, He WH, Cui MH, Pang LL, Zhu YB. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2016;384:68–75.CrossRefGoogle Scholar
  82. 82.
    Beeler B, Asta M, Hosemann P, Grønbech-Jensen N. Effects of applied strain on radiation damage generation in body-centered cubic iron. J Nucl Mater. 2015;459:159–65.CrossRefGoogle Scholar
  83. 83.
    Chen Z, Kioussis N, Ghoniem N, Seif D. Strain-field effects on the formation and migration energies of self interstitials in α -Fe from first principles. Phys Rev B. 2010.
  84. 84.
    Zolnikov KP, Korchuganov AV, Kryzhevich DS, Chernov VM, Psakhie SG. Structural changes in elastically stressed crystallites under irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2015;352:43–6.CrossRefGoogle Scholar
  85. 85.
    Stoller RE, Golubov SI, Domain C, Becquart CS. Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J Nucl Mater. 2008;382:77–90.CrossRefGoogle Scholar
  86. 86.
    Johnson MD, Caturla M-J, Díaz de la Rubia T. A kinetic Monte–Carlo study of the effective diffusivity of the silicon self-interstitial in the presence of carbon and boron. J Appl Phys. 1998;84:1963–7.CrossRefGoogle Scholar
  87. 87.
    Domain C, Becquart CS, Malerba L. Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater. 2004;335:121–45.CrossRefGoogle Scholar
  88. 88.
    Soneda N, Ishino S, Takahashi A, Dohi K. Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation. J Nucl Mater. 2003;323:169–80.CrossRefGoogle Scholar
  89. 89.
    Martin-Bragado I, Rivera A, Valles G, Gomez-Selles JL, Caturla MJ. MMonCa: an object Kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput Phys Commun. 2013;184:2703–10.CrossRefGoogle Scholar
  90. 90.
    Dalla Torre J, Bocquet J-L, Doan NV, Adam E, Barbu A. JERK, an event-based Kinetic Monte Carlo model to predict microstructure evolution of materials under irradiation. Philos Mag. 2005;85:549–58.CrossRefGoogle Scholar
  91. 91.
    Becquart CS, Soisson F. Kinetic Monte Carlo simulations of precipitation under irradiation. This Book.Google Scholar
  92. 92.
    Jourdan T, Crocombette J-P. Rate theory cluster dynamics simulations including spatial correlations within displacement cascades. Phys Rev B. 2012.
  93. 93.
    Soneda N, de la Rubia TD. Defect production, annealing kinetics and damage evolution in α-Fe: an atomic-scale computer simulation. Philos Mag A. 1998;78:995–1019.CrossRefGoogle Scholar
  94. 94.
    Xu H, Osetsky YN, Stoller RE. Cascade annealing simulations of bcc iron using object kinetic Monte Carlo. J Nucl Mater. 2012;423:102–9.CrossRefGoogle Scholar
  95. 95.
    Nandipati G, Setyawan W, Heinisch HL, Roche KJ, Kurtz RJ, Wirth BD. Displacement cascades and defect annealing in tungsten, Part III: the sensitivity of cascade annealing in tungsten to the values of kinetic parameters. J Nucl Mater. 2015;462:345–53.CrossRefGoogle Scholar
  96. 96.
    Xu H, Stoller RE, Osetsky YN. Cascade defect evolution processes: comparison of atomistic methods. J Nucl Mater. 2013;443:66–70.CrossRefGoogle Scholar
  97. 97.
    Souidi A, Hou M, Becquart CS, Malerba L, Domain C, Stoller RE. On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J Nucl Mater. 2011;419:122–33.CrossRefGoogle Scholar
  98. 98.
    Becquart CS, Souidi A, Domain C, Hou M, Malerba L, Stoller RE. Effect of displacement cascade structure and defect mobility on the growth of point defect clusters under irradiation. J Nucl Mater. 2006;351:39–46.CrossRefGoogle Scholar
  99. 99.
    Domain C, Becquart CS, van Duysen JC. Kinetic Monte Carlo simulations of cascades in Fe alloys. MRS Online Proc Libr Arch. 2000.
  100. 100.
    Crocombette J-P, Jourdan T. Cell Molecular Dynamics for Cascades (CMDC): a new tool for cascade simulation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2015;352:9–13.CrossRefGoogle Scholar
  101. 101.
    Ortiz CJ. work in progress.Google Scholar
  102. 102.
    Terentyev D, Lagerstedt C, Olsson P, Nordlund K, Wallenius J, Becquart CS, Malerba L. Effect of the interatomic potential on the features of displacement cascades in α-Fe: a molecular dynamics study. J Nucl Mater. 2006;351:65–77.CrossRefGoogle Scholar
  103. 103.
    Fikar J, Schäublin R. Molecular dynamics simulation of radiation damage in bcc tungsten. J Nucl Mater. 2009;386–388:97–101.CrossRefGoogle Scholar
  104. 104.
    Seidman DN. The direct observation of point defects in irradiated or quenched metals by quantitative field ion microscopy. J Phys F Met Phys. 1973;3:393–421.CrossRefGoogle Scholar
  105. 105.
    Ehrhart P. Investigation of radiation damage by X-ray diffraction. J Nucl Mater. 1994;216:170–98.CrossRefGoogle Scholar
  106. 106.
    Olsson P, Becquart CS, Domain C. Ab initio threshold displacement energies in iron. Mater Res Lett. 2016;4:219–25.CrossRefGoogle Scholar
  107. 107.
    Alexander R, Marinica M-C, Proville L, Willaime F, Arakawa K, Gilbert MR, Dudarev SL. Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium. Phys Rev B. 2016.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Charlotte S. Becquart
    • 1
    • 4
  • Andrée De Backer
    • 2
  • Christophe Domain
    • 3
    • 4
  1. 1.University Lille, CNRS, INRA, ENSCL, UMR 8207UMET, Unité Matériaux et TransformationsLilleFrance
  2. 2.CCFE, Culham Science Centre -AbingdonUK
  3. 3.EDF-R&D, Département Matériaux et Mécanique des ComposantsLes RenardièresMoret sur LoingFrance
  4. 4.EM2VM, Joint laboratory Study and Modeling of the Microstructure for Ageing of MaterialsLille and Moret sur LoingFrance

Personalised recommendations