Molecular Dynamics Simulations of Nanopolycrystals

  • Christian BrandlEmail author
Living reference work entry


Nanopolycrystals are polycrystalline metals with an average grain size below 100 nm and exhibit extraordinary strength values. In contrast to the coarse-grained polycrystals, the confinement by grain boundaries of the plastic deformation in the grains approaches limits, where the conventional theories break down. In the grain size regime 10–20 nm, molecular dynamics simulations play a crucial role to elucidate the possible and surprising deformation mechanisms in nanocrystalline metals although the MD method uses assumptions, which ad hoc do not allow for a straightforward extrapolation to experimental conditions. This chapter presents the nanocrystalline-specific methods for MD simulations with their subtleties and summarizes the deformation mechanisms in nanopolycrystals with their signatures on the (experimental) deformation behavior. A comprehensive understanding on the interplay of the deformation mechanisms is suggested in this chapter, which is closed with a list of still-open issues in the field.



The authors wish to acknowledge the financial support by the German Research Foundation (DFG) through grant BR4886/2-1 and the valuable discussions on nanocrystalline materials with Helena Van Swygenhoven, Peter M. Derlet, Steven Van Petegem, Stefan Brandstetter, Ruth Schwaiger, Patric Gruber, and Rainer Birringer.


  1. 1.
    Arzt E. Overview no. 130 – size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 1998;46(16):5611–26.CrossRefGoogle Scholar
  2. 2.
    Nieh TG, Wadsworth J. Hall-petch relation in nanocrystalline solids. Scr Metall Mater. 1991;25(4):955–8.CrossRefGoogle Scholar
  3. 3.
    Pande CS, Masumura RA, Armstrong RW. Pile-up based hall-petch relation for nanoscale materials. Nanostruct Mater. 1993;2(3):323–31.CrossRefGoogle Scholar
  4. 4.
    Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51(4):427–556.CrossRefGoogle Scholar
  5. 5.
    Trelewicz JR, Schuh CA. The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 2007;55(17):5948–58.CrossRefGoogle Scholar
  6. 6.
    Trelewicz JR, Schuh CA. The Hall-Petch breakdown at high strain rates: optimizing nanocrystalline grain size for impact applications. Appl Phys Lett. 2008;93(17):3.CrossRefGoogle Scholar
  7. 7.
    Derlet PM, Van Swygenhoven H. Atomic positional disorder in fcc metal nanocrystalline grain boundaries. Phys Rev B. 2003;67(1):20030121.CrossRefGoogle Scholar
  8. 8.
    Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33(4):223–315.CrossRefGoogle Scholar
  9. 9.
    Haubold T, Birringer R, Lengeler B, Gleiter H. Extended X-ray absorption fine-structure studies of nanocrystalline materials exhibiting a new solid-state structure with randomly arranged atoms. J Less-Common Met. 1988;145(1–2):557–63.CrossRefGoogle Scholar
  10. 10.
    Herr U, Jing J, Birringer R, Gonser U, Gleiter H. Investigation of nanocrystalline iron materials by Mossbauer-spectroscopy. Appl Phys Lett. 1987;50(8):472–4.CrossRefGoogle Scholar
  11. 11.
    Keblinski P, Wolf D, Phillpot SR, Gleiter H. Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation. Scr Mater. 1999;41(6):631–6.CrossRefGoogle Scholar
  12. 12.
    Zhu X, Birringer R, Herr U, Gleiter H. X-ray-diffraction studies of the structure of nanometer-sized crystalline materials. Phys Rev B. 1987;35(17):9085–90.CrossRefGoogle Scholar
  13. 13.
    Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P. Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 2003a;51(2):387–405.CrossRefGoogle Scholar
  14. 14.
    Siegel RW, Thomas GJ. Grain-boundaries in nanophase materials. Ultramicroscopy. 1992;40(3):376–84.CrossRefGoogle Scholar
  15. 15.
    Thomas GJ, Siegel RW, Eastman JA. Grain-boundaries in nanophase palladium – high-resolution electron-microscopy and image simulation. Scr Metall Mater. 1990;24(1):201–6.CrossRefGoogle Scholar
  16. 16.
    Van Swygenhoven H, Caro A, Farkas D. A molecular dynamics study of polycrystalline fcc metals at the nanoscale: grain boundary structure and its influence on plastic deformation. Mater Sci Eng a-Struct Mater Properties Microstructure Process. 2001;309:440–4.CrossRefGoogle Scholar
  17. 17.
    Van Swygenhoven H, Farkas D, Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale. Phys Rev B. 2000;62(2):831–8.CrossRefGoogle Scholar
  18. 18.
    Schiotz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science. 2003;301(5638):1357–9.CrossRefGoogle Scholar
  19. 19.
    Argon AS, Yip S. The strongest size. Philos Mag Lett. 2006;86(11):713–20.CrossRefGoogle Scholar
  20. 20.
    Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007;55(12):4041–65.CrossRefGoogle Scholar
  21. 21.
    Hahn EN, Meyers MA. Grain-size dependent mechanical behavior of nanocrystalline metals. Mater Sci Eng A. 2015;646:101–34.CrossRefGoogle Scholar
  22. 22.
    Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003b;51(19):5743–74.CrossRefGoogle Scholar
  23. 23.
    Van Swygenhoven H, Derlet PM. Atomistic simulations of dislocations in FCC metallic Nanocrystalline materials. In: Hirth JP, editor. Dislocations in solids, a tribute to F.R.N. Nabarro. Amsterdam: Elsevier; 2008. p. 1–41.Google Scholar
  24. 24.
    Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 2005;53(1):1–40.CrossRefGoogle Scholar
  25. 25.
    Hasnaoui A, Van Swygenhoven H, Derlet PM. On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation. Acta Mater. 2002;50(15):3927–39.CrossRefGoogle Scholar
  26. 26.
    Weygand D, Brechet Y, Lepinoux J, Gust W. Three-dimensional grain growth: a vertex dynamics simulation. Philos Mag B Phys Condens Matter Stat Mech Electron Opt Magn Properties. 1999;79(5):703–16.Google Scholar
  27. 27.
    Finnis MW, Paxton AT, Pettifor DG, Sutton AP, Ohta Y. Interatomic forces in transition-metals. Philos Mag A Phys Condens Matter Defects Mech Properties. 1988;58(1):143–63.Google Scholar
  28. 28.
    Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities , surfaces , and other defects in metals. Phys Rev B. 1984;29(12):6443–53.CrossRefGoogle Scholar
  29. 29.
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng. 2010;18:015012.CrossRefGoogle Scholar
  30. 30.
    Froseth AG, Derlet PM, Van Swygenhoven H. Twinning in nanocrystalline fcc metals. Adv Eng Mater. 2005;7(1–2):16–20.CrossRefGoogle Scholar
  31. 31.
    Bitzek E, Brandl C, Derlet P, Van Swygenhoven H. Dislocation cross-slip in Nanocrystalline fcc metals. Phys Rev Lett. 2008;100:235501.CrossRefGoogle Scholar
  32. 32.
    Kelchner C, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58:11085–8.CrossRefGoogle Scholar
  33. 33.
    Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91:4950–63.CrossRefGoogle Scholar
  34. 34.
    Larsen PM, Schmidt S, Schiøtz J. Robust structural identification via polyhedral template matching. Model Simul Mater Sci Eng. 2016;24(5):055007.CrossRefGoogle Scholar
  35. 35.
    Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–90.CrossRefGoogle Scholar
  36. 36.
    Brandl C, Derlet PM, Van Swygenhoven H. Dislocation mediated plasticity in nanocrystalline Al: the strongest size. Model Simul Mater Sci Eng. 2011;19:074005.CrossRefGoogle Scholar
  37. 37.
    Brandl C, Derlet PM, Van Swygenhoven H. Strain rates in molecular dynamics simulations of nanocrystalline metals. Philos Mag. 2009;89:3465–75.CrossRefGoogle Scholar
  38. 38.
    Jarmakani HN, Bringa EM, Erhart P, Remington BA, Wang YM, Vo NQ, Meyers MA. Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals. Acta Mater. 2008;56(19):5584–604.CrossRefGoogle Scholar
  39. 39.
    Bitzek E, Brandl C, Weygand D, Derlet PM, Van Swygenhoven H. Atomistic simulation of a dislocation shear loop interacting with grain boundaries in nanocrystalline aluminium. Model Simul Mater Sci Eng. 2009;17(5):8.CrossRefGoogle Scholar
  40. 40.
    Schiotz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391(6667):561–3.CrossRefGoogle Scholar
  41. 41.
    Schiotz J, Vegge T, Di Tolla FD, Jacobsen KW. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B. 1999;60(17):11971–83.CrossRefGoogle Scholar
  42. 42.
    Van Swygenhoven H, Caro A. Plastic behavior of nanophase metals studied by molecular dynamics. Phys Rev B. 1998;58(17):11246–51.CrossRefGoogle Scholar
  43. 43.
    Cahn JW, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation. Acta Mater. 2006;54(19):4953–75.CrossRefGoogle Scholar
  44. 44.
    Velasco M, Van Swygenhoven H, Brandl C. Coupled grain boundary motion in a nanocrystalline grain boundary network. Scr Mater. 2011;65:151–4.CrossRefGoogle Scholar
  45. 45.
    Hasnaoui A, Van Swygenhoven H, Derlet PM. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science. 2003;300(5625):1550–2.CrossRefGoogle Scholar
  46. 46.
    Shimokawa T, Kinari T, Shintaku S, Nakatani A. Collective grain deformation of nanocrystalline metals by molecular dynamics simulations. Model Simul Mater Sci Eng. 2006;14(5):S63–72.CrossRefGoogle Scholar
  47. 47.
    Shimokawa T, Nakatani A, Kitagawa H. Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations. Phys Rev B. 2005;71(22):224110.CrossRefGoogle Scholar
  48. 48.
    Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX. Grain boundary-mediated plasticity in nanocrystalline nickel. Science. 2004;305(5684):654–7.CrossRefGoogle Scholar
  49. 49.
    Chen M, Yan X. Comment on “Grain boundary-mediated plasticity in nanocrystalline nickel”. Science. 2005;308(5720):356c.CrossRefGoogle Scholar
  50. 50.
    Cheng S, Stoica AD, Wang XL, Ren Y, Almer J, Horton JA, Liu CT, Clausen B, Brown DW, Liaw PK, Zuo L. Deformation crossover: from nano- to mesoscale. Phys Rev Lett. 2009;103(3):035502–4.CrossRefGoogle Scholar
  51. 51.
    Markmann J, Bunzel P, Rosner H, Liu KW, Padmanabhan KA, Birringer R, Gleiter H, Weissmuller J. Microstructure evolution during rolling of inert-gas condensed palladium. Scr Mater. 2003;49(7):637–44.CrossRefGoogle Scholar
  52. 52.
    McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature. 1999;398(6729):684–6.CrossRefGoogle Scholar
  53. 53.
    Hirth JP, Lothe J. Theory of dislocations. 2nd ed. New York/Chichester: Wiley; 1982.zbMATHGoogle Scholar
  54. 54.
    Van Swygenhoven H, Derlet PM, Froseth AG. Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 2006;54(7):1975–83.CrossRefGoogle Scholar
  55. 55.
    Van Swygenhoven H, Derlet PM, Froseth AG. Stacking fault energies and slip in nanocrystalline metals. Nat Mater. 2004;3(6):399–403.CrossRefGoogle Scholar
  56. 56.
    Van Swygenhoven H, Derlet PM, Hasnaoui A. Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys Rev B. 2002;66(2):024101.CrossRefGoogle Scholar
  57. 57.
    Yamakov V, Wolf D, Phillpot SR, Gleiter H. Deformation twinning in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 2002a;50(20):5005–20.CrossRefGoogle Scholar
  58. 58.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater. 2002b;1(1):45–8.CrossRefGoogle Scholar
  59. 59.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater. 2004;3(1):43–7.CrossRefGoogle Scholar
  60. 60.
    Asaro RJ, Krysl P, Kad B. Deformation mechanism transitions in nanoscale fcc metals. Philos Mag Lett. 2003;83(12):733–43.CrossRefGoogle Scholar
  61. 61.
    Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline al by molecular-dynamics simulation. Acta Mater. 2001;49(14):2713–22.CrossRefGoogle Scholar
  62. 62.
    Vitek V. Intrinsic stacking faults in body-centred cubic crystals. Philos Mag A Phys Condens Matter Defects Mech Properties. 1968;18(154):773–86.Google Scholar
  63. 63.
    Rice J. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids. 1992;40:239–71.CrossRefGoogle Scholar
  64. 64.
    Tadmor EB, Hai S. A Peierls criterion for the onset of deformation twinning at a crack tip. J Mech Phys Solids. 2003;51:765–93.MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Schäfer J, Stukowski A, Albe K. Plastic deformation of nanocrystalline Pd-Au alloys: on the interplay of grain boundary solute segregation, fault energies and grain size. Acta Mater. 2011;59(8):2957–68.CrossRefGoogle Scholar
  66. 66.
    Brandstetter S, Derlet PM, Van Petegem S, Van Swygenhoven H. Willliamson-hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Mater. 2008;56(2):165–76.CrossRefGoogle Scholar
  67. 67.
    Brandl C, Bitzek E, Derlet PM, Van Swygenhoven H. Slip transfer through a general high angle grain boundary in nanocrystalline aluminum. Appl Phys Lett. 2007;91:111914.CrossRefGoogle Scholar
  68. 68.
    Hoagland RG, Hirth JP, Misra A. On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos Mag. 2006;86(23):3537–58.CrossRefGoogle Scholar
  69. 69.
    Van Petegem S, Brandstetter S, Schmitt B, Van Swygenhoven H. Creep in nanocrystalline Ni during X-ray diffraction. Scr Mater. 2009;60(5):297–300.CrossRefGoogle Scholar
  70. 70.
    Dalla Torre F, Spätig P, Schäublin R, Victoria M. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 2005;53(8):2337–49.CrossRefGoogle Scholar
  71. 71.
    Van Petegem S, Brandstetter S, Van Swygenhoven H, Martin JL. Internal and effective stresses in nanocrystalline electrodeposited Ni. Appl Phys Lett. 2006;89(7):073102.CrossRefGoogle Scholar
  72. 72.
    Wang YM, Hamza AV, Ma E. Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl Phys Lett. 2005;86(24):241917.CrossRefGoogle Scholar
  73. 73.
    Wang YM, Hamza AV, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 2006;54(10):2715–26.CrossRefGoogle Scholar
  74. 74.
    Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM. In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 2003;51(7):1937–43.CrossRefGoogle Scholar
  75. 75.
    Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ. Microsample tensile testing of nanocrystalline metals. Philos Mag a-Phys Condens Matter Struct Defects Mech Properties. 2000;80(4):1017–26.Google Scholar
  76. 76.
    Wu X-L, Ma E. Dislocations in nanocrystalline grains. Appl Phys Lett. 2006;88(23):231911–3.CrossRefGoogle Scholar
  77. 77.
    Budrovic Z, Van Swygenhoven H, Derlet PM, Van Petegem S, Schmitt B. Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science. 2004;304(5668):273–6.CrossRefGoogle Scholar
  78. 78.
    Brandstetter S, Budrovic Z, Van Petegem S, Schmitt B, Stergar E, Derlet PM, Van Swygenhoven H. Temperature-dependent residual broadening of x-ray diffraction spectra in nanocrystalline plasticity. Appl Phys Lett. 2005;87(23):231910.CrossRefGoogle Scholar
  79. 79.
    Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM. Deformation twinning in nanocrystalline aluminum. Science. 2003;300(5623):1275–7.CrossRefGoogle Scholar
  80. 80.
    Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV. Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl Phys Lett. 2004;84(4):592–4.CrossRefGoogle Scholar
  81. 81.
    Wu X, Zhu YT, Chen MW, Ma E. Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scr Mater. 2006;54(9):1685–90.CrossRefGoogle Scholar
  82. 82.
    Wu XL, Zhu YT. Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries. Appl Phys Lett. 2006;89(3):031922–3.CrossRefGoogle Scholar
  83. 83.
    Wu XL, Zhu YT. Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett. 2008;101(2):025503–4.CrossRefGoogle Scholar
  84. 84.
    Saada G. From the single crystal to the nanocrystal. Philos Mag. 2005;85:3003–18.CrossRefGoogle Scholar
  85. 85.
    Lohmiller J, Baumbusch R, Kraft O, Gruber PA. Differentiation of deformation modes in nanocrystalline Pd films inferred from peak asymmetry evolution using in situ x-ray diffraction. Phys Rev Lett. 2013;110(6):066101.CrossRefGoogle Scholar
  86. 86.
    Kobler A, Brandl C, Hahn H, Kubel C. In situ observation of deformation processes in nanocrystalline face-centered cubic metals. Beilstein J Nanotechnol. 2016;7:572–80.CrossRefGoogle Scholar
  87. 87.
    Froseth AG, Derlet PM, Van Swygenhoven H. Vicinal twin boundaries providing dislocation sources in nanocrystalline Al. Scr Mater. 2006;54(3):477–81.Google Scholar
  88. 88.
    Tschopp MA, Spearot DE, McDowell DL. Influence of Grain Boundary Structure on Dislocation Nucleation in FCC Metals. In: Hirth JP, editor. Dislocations in solids, a tribute to F.R.N. Nabarro. Amsterdam: Elsevier; 2008. p. 43–139.Google Scholar
  89. 89.
    Cheng Y, Mrovec M, Gumbsch P. Atomistic simulations of interactions between the 1/2(111) edge dislocation and symmetric tilt grain boundaries in tungsten. Philos Mag. 2008;88(4):547–60.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Applied Materials (IAM-WBM)Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations