Encyclopedia of Ionic Liquids

Living Edition
| Editors: Suojiang Zhang

Aquatic Toxicology of Ionic Liquids (ILs)

  • Francisca A. e Silva
  • João A. P. Coutinho
  • Sónia P. M. VenturaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-6739-6_52-1


The broad application of ionic liquids (ILs) as process chemicals, solvents, heat transfer and storage fluids, electrolytes, and additives is encouraging significant progress in the design of novel chemical and biotechnological processes and products [1]. Both academia and industry have been using ILs to boost established processes including laborious routes, replace nefarious chemicals, or minimize waste generation, as well as create innovative technologies and products [1, 2, 3]. What made ILs appealing was, in the first place, their recognized unique physical and chemical properties (e.g., non-flammability, nonvolatility, high thermal stability, solvation ability, and structural versatility) [4]. Together with their “designer solvent” status, ILs started to be defined as “green” and, more recently, “high performance” chemicals [5, 6]. Often, however, such headlines represent nothing but overgeneralizations that lead to critical misconceptions within IL field. Likely,...

This is a preview of subscription content, log in to check access.



This work was developed within the scope of the project CICECO – Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. The authors also acknowledge the support by the Portuguese Foundation for Science and Technology (FCT) through the project PTDC/ATP-EAM/5331/2014. F. A. e Silva acknowledges the financial support given by FCT within the PhD scholarship SFRH/BD/94901/2013. S. P. M. Ventura acknowledges FCT/MEC for a contract under Investigador FCT 2015 contract number IF/00402/2015.


  1. 1.
    Schubert TJS (2017) Current and future ionic liquid markets. In: Ionic liquids: current state and future directions, vol 1250. American Chemical Society, Washington, DC pp 35–65Google Scholar
  2. 2.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150CrossRefGoogle Scholar
  3. 3.
    Claus J, Sommer FO, Kragl U (2018) Ionic liquids in biotechnology and beyond. Solid State Ionics 314:119–128CrossRefGoogle Scholar
  4. 4.
    Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18(4):275–297CrossRefGoogle Scholar
  5. 5.
    Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10(3):691–706CrossRefGoogle Scholar
  6. 6.
    Kunz W, Häckl K (2016) The hype with ionic liquids as solvents. Chem Phys Lett 661:6–12CrossRefGoogle Scholar
  7. 7.
    Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7(2):336–360CrossRefGoogle Scholar
  8. 8.
    Richardson SD, Ternes TA (2018) Water analysis: emerging contaminants and current issues. Anal Chem 90(1):398–428CrossRefGoogle Scholar
  9. 9.
    Petkovic M, Seddon KR, Rebelo LPN, Silva Pereira C (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40(3):1383–1403CrossRefGoogle Scholar
  10. 10.
    Matzke M, Arning J, Ranke J, Jastorff B, Stolte S (2009) Design of inherently safer ionic liquids: toxicology and biodegradation. In: Anastas PT (ed) Handbook of green chemistryGoogle Scholar
  11. 11.
    Part 4 – Environmental Hazards. United Nations, New York and Geneva https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev01/English/04e_part4.pdf. Accessed 16 Oct 2018
  12. 12.
    Gontrani L (2018) Choline-amino acid ionic liquids: past and recent achievements about the structure and properties of these really “green” chemicals. Biophys Rev 10(3):873–880CrossRefGoogle Scholar
  13. 13.
    Zeisel SH, da Costa K-A (2009) Choline: an essential nutrient for public health. Nutr Rev 67(11):615–623CrossRefGoogle Scholar
  14. 14.
    Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8(1):82–90CrossRefGoogle Scholar
  15. 15.
    Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72(4):1170–1176CrossRefGoogle Scholar
  16. 16.
    Younes N, Salem R, Al-Asmakh M, Altamash T, Pintus G, Khraisheh M, Nasrallah GK (2018) Toxicity evaluation of selected ionic liquid compounds on embryonic development of Zebrafish. Ecotoxicol Environ Saf 161:17–24CrossRefGoogle Scholar
  17. 17.
    Sakamoto M, Ohama Y, Aoki S, Fukushi K, Mori T, Yoshimura Y, Shimizu A (2018) Effect of ionic liquids on the hatching of Artemia salina cysts. Aust J Chem 71(7):492–496Google Scholar
  18. 18.
    Ventura SPM, e Silva FA, Gonçalves AMM, Pereira JL, Gonçalves F, Coutinho JAP (2014) Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 102:48–54CrossRefGoogle Scholar
  19. 19.
    Santos JI, Gonçalves AMM, Pereira JL, Figueiredo BFHT, e Silva FA, Coutinho JAP, Ventura SPM, Gonçalves F (2015) Environmental safety of cholinium-based ionic liquids: assessing structure–ecotoxicity relationships. Green Chem 17(9):4657–4668CrossRefGoogle Scholar
  20. 20.
    Peric B, Sierra J, Martí E, Cruañas R, Garau MA, Arning J, Bottin-Weber U, Stolte S (2013) (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261:99–105CrossRefGoogle Scholar
  21. 21.
    e Silva FA, Siopa F, Figueiredo BFHT, Gonçalves AMM, Pereira JL, Gonçalves F, Coutinho JAP, Afonso CAM, Ventura SPM (2014) Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids. Ecotoxicol Environ Saf 108:302–310CrossRefGoogle Scholar
  22. 22.
    Gouveia W, Jorge TF, Martins S, Meireles M, Carolino M, Cruz C, Almeida TV, Araújo MEM (2014) Toxicity of ionic liquids prepared from biomaterials. Chemosphere 104:51–56CrossRefGoogle Scholar
  23. 23.
    Zhang S, Ma L, Wen P, Ye X, Dong R, Sun W, Fan M, Yang D, Zhou F, Liu W (2018) The ecotoxicity and tribological properties of choline amino acid ionic liquid lubricants. Tribol Int 121:435–441CrossRefGoogle Scholar
  24. 24.
    Sintra TE, Luís A, Rocha SN, Lobo Ferreira AIMC, Gonçalves F, Santos LMNBF, Neves BM, Freire MG, Ventura SPM, Coutinho JAP (2015) Enhancing the antioxidant characteristics of phenolic acids by their conversion into cholinium salts. ACS Sustain Chem Eng 3(10):2558–2565CrossRefGoogle Scholar
  25. 25.
    Gehlot PS, Kulshrestha A, Bharmoria P, Damarla K, Chokshi K, Kumar A (2017) Surface-active ionic liquid cholinium dodecylbenzenesulfonate: self-assembling behavior and interaction with cellulase. ACS Omega 2(10):7451–7460CrossRefGoogle Scholar
  26. 26.
    Taha M, Almeida MR, e Silva FA, Domingues P, Ventura SPM, Coutinho JAP, Freire MG (2015) Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications. Chem Eur J 21(12):4781–4788CrossRefGoogle Scholar
  27. 27.
    Lee SY, Vicente FA, e Silva FA, Sintra TE, Taha M, Khoiroh I, Coutinho JAP, Show PL, Ventura SPM (2015) Evaluating self-buffering ionic liquids for biotechnological applications. ACS Sustain Chem Eng 3(12):3420–3428CrossRefGoogle Scholar
  28. 28.
    Rantamäki AH, Ruokonen S-K, Sklavounos E, Kyllönen L, King AWT, Wiedmer SK (2017) Impact of surface-active guanidinium-, tetramethylguanidinium-, and cholinium-based ionic liquids on vibrio fischeri cells and dipalmitoylphosphatidylcholine liposomes. Sci Rep 7:46673CrossRefGoogle Scholar
  29. 29.
    Taha M, e Silva FA, Quental MV, Ventura SPM, Freire MG, Coutinho JAP (2014) Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chem 16(6):3149–3159CrossRefGoogle Scholar
  30. 30.
    Roy K, Das RN, Popelier PLA (2014) Quantitative structure–activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Chemosphere 112:120–127CrossRefGoogle Scholar
  31. 31.
    Jessop PG (2018) Fundamental properties and practical applications of ionic liquids: concluding remarks. Faraday Discuss 206:587–601CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Francisca A. e Silva
    • 1
  • João A. P. Coutinho
    • 1
  • Sónia P. M. Ventura
    • 1
    Email author
  1. 1.Chemistry Department, CICECOUniversity of AveiroAveiroPortugal

Section editors and affiliations

  • Chunxi Li
    • 1
  • Stefan Stolte
  1. 1.Chemical EngineeringBeijing University of Chemical TechnologyBeijingChina