Encyclopedia of Ionic Liquids

Living Edition
| Editors: Suojiang Zhang

Predicting the Environmental Fate of Ionic Liquids

  • Christian JungnickelEmail author
  • Natalia Łozińska
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-6739-6_51-1

Introduction

With the increasing numbers of applications, and uses of ionic liquids (ILs), the possibility of an accidental release of ILs becomes more likely. In the interest of determining the hazard of such a release, and optimizing the remediation methodology, it is necessary to accurately determine the fate of ILs in the environment. If we can predict the fate of the compound, we can assess the potential hazard to man and the environment, and also propose methods of cleaning or protecting the environment. To aid this prediction, one of us (Jungnickel), published a number of experimental papers on the sorption and consequent environmental fate of ILs in the environment [14, 15, 19, 20, 21, 22, 25, 26, 27]. However, due to the often cited and implicit myriad number of possible ILs [13], it is difficult, if not impossible, to experimentally determine the key physicochemical parameters for the ILs before they are accidentally released. For this, a number of research groups have taken...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Barycki M, Sosnowska A, Piotrowska M, Urbaszek P, Rybinska A, Grzonkowska M, Puzyn T (2016) ILPC: simple chemometric tool supporting the design of ionic liquids. J Cheminform 8:1–14.  https://doi.org/10.1186/s13321-016-0152-4CrossRefGoogle Scholar
  2. 2.
    Beaulieu JJ, Tank JL, Kopacz M (2008) Sorption of imidazolium-based ionic liquids to aquatic sediments. Chemosphere 70:1320–1328.  https://doi.org/10.1016/j.chemosphere.2007.07.046CrossRefPubMedGoogle Scholar
  3. 3.
    Bruzzone S, Chiappe C, Focardi SE, Pretti C, Renzi M (2011) Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure-toxicity relationships. Chem Eng J 175:17–23.  https://doi.org/10.1016/j.cej.2011.08.073CrossRefGoogle Scholar
  4. 4.
    Cho CW, Preiss U, Jungnickel C, Solte S, Arning J, Ranke J, Klamt A, Krossing I, Thöming J (2011) Ionic liquids: predictions of physicochemical properties with experimental and/or DFT-calculated LFER parameters to understand molecular interactions in solution. J Phys Chem B 115:6040–6050.  https://doi.org/10.1021/jp200042fCrossRefPubMedGoogle Scholar
  5. 5.
    Cho CW, Jungnickel C, Stolte S, Preiss U, Arning J, Ranke J, Krossing I, Thöming J (2012) Determination of LFER descriptors of 30 cations of ionic liquids-progress in understanding their molecular interaction potentials. ChemPhysChem 13:780–787.  https://doi.org/10.1002/cphc.201100872CrossRefPubMedGoogle Scholar
  6. 6.
    Cho CW, Stolte S, Ranke J, Preiss U, Krossing I, Thöming J (2014) Quantitative analysis of molecular interaction potentials of ionic liquid anions using multi-functionalized stationary phases in HPLC. ChemPhysChem 15:2351–2358.  https://doi.org/10.1002/cphc.201402092CrossRefPubMedGoogle Scholar
  7. 7.
    Deng Y, Besse-Hoggan P, Sancelme M, Delort AM, Husson P, Margarida F, Gomes C (2011) Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids. J Hazard Mater 198:165–174.  https://doi.org/10.1016/j.jhazmat.2011.10.024CrossRefPubMedGoogle Scholar
  8. 8.
    Deng Y, Besse-Hoggan P, Husson P, Sancelme M, Delort AM, Stepnowski P, Paszkiewicz P, Gołębiewski M, Margarida F, Gomes C (2012) Relevant parameters for assessing the environmental impact of some pyridinium, ammonium and pyrrolidinium based ionic liquids. Chemosphere 89:327–333.  https://doi.org/10.1016/j.chemosphere.2012.04.050CrossRefPubMedGoogle Scholar
  9. 9.
    Depuydt D, Dehaen W, Binnemans K (2017) Docusate ionic liquids: effect of cation on water solubility and solvent extraction behavior. ChemPlusChem 82:458–466.  https://doi.org/10.1002/cplu.201600592CrossRefGoogle Scholar
  10. 10.
    Freire MG, Neves CMSS, Ventura SPM, Pratas MJ, Marrucho IM, Oliveira J, Coutinho JAP, Fernandes AM (2010) Solubility of non-aromatic ionic liquids in water and correlation using a QSPR approach. Fluid Phase Equilib 294:234–240.  https://doi.org/10.1016/j.fluid.2009.12.035CrossRefGoogle Scholar
  11. 11.
    Gharagheizi F (2012) Determination of diffusion coefficient of organic compounds in water using a simple molecular-based method. Ind Eng Chem Res 51:2797–2803.  https://doi.org/10.1021/ie201944hCrossRefGoogle Scholar
  12. 12.
    Heintz A, Ludwig R, Schmidt E (2011) Limiting diffusion coefficients of ionic liquids in water and methanol: a combined experimental and molecular dynamics study. Phys Chem Chem Phys 13:3268–3273.  https://doi.org/10.1039/c0cp00442aCrossRefPubMedGoogle Scholar
  13. 13.
    Holbrey JD, Seddon K (1999) Ionic liquids. Compr Biotechnol (Second Ed) 2:999–1006.  https://doi.org/10.1016/B978-0-08-088504-9.00151-3CrossRefGoogle Scholar
  14. 14.
    Jungnickel C, Markiewicz M, Preiss U, Mrozik W, Stepnowski P (2009) Interaction of imidazolium type ionic liquids with the solid phase. J Optoelectron Adv Mater 1:82–87Google Scholar
  15. 15.
    Jungnickel C, Mrozik W, Markiewicz M, Luczak J (2011) Fate of ionic liquids in soils and sediments. Curr Org Chem 15:1928–1945.  https://doi.org/10.2174/138527211795703702CrossRefGoogle Scholar
  16. 16.
    Kamath G, Bhatnagar N, Baker GA, Baker SN, Potoff JJ (2012) Computational prediction of ionic liquid 1-octanol/water partition coefficients. Phys Chem Chem Phys 14:4339–4342.  https://doi.org/10.1039/c2cp40122cCrossRefPubMedGoogle Scholar
  17. 17.
    Keyes R, Scovazzo P (2017) Ammonium ionic liquid solubilities in water and Micellar formation. J Phys Chem B 121:7163–7172.  https://doi.org/10.1021/acs.jpcb.7b05109CrossRefPubMedGoogle Scholar
  18. 18.
    Lee BS, Lin ST (2014) A priori prediction of the octanol-water partition coefficient (Kow) of ionic liquids. Fluid Phase Equilib 363:233–238.  https://doi.org/10.1016/j.fluid.2013.11.042CrossRefGoogle Scholar
  19. 19.
    Markiewicz M, Jungnickel C, Markowska A, Szczepaniak U, Paszkiewicz M, Hupka J (2009) 1-Methyl-3-octylimidazolium chloride-sorption and primary biodegradation analysis in activated sewage sludge. Molecules 14:4396–4405.  https://doi.org/10.3390/molecules14114396CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Markiewicz M, Mrozik W, Rezwan K, Thöming J, Hupka J, Jungnickel C (2013) Changes in zeta potential of imidazolium ionic liquids modified minerals – implications for determining mechanism of adsorption. Chemosphere 90:706–712.  https://doi.org/10.1016/j.chemosphere.2012.09.053CrossRefPubMedGoogle Scholar
  21. 21.
    Markiewicz M, Jungnickel C, Cho CW, Stolte S (2015) Mobility and biodegradability of an imidazolium based ionic liquid in soil and soil amended with waste sewage sludge. Environ Sci: Processes Impacts 17:1462–1469.  https://doi.org/10.1039/c5em00209eCrossRefGoogle Scholar
  22. 22.
    Markiewicz M, Markowska A, Hupka J, Aranowski R, Jungnickel C (2009) Sorption of ionic liquids. Environ Prot Eng 35:53–64.Google Scholar
  23. 23.
    Matzke M, Thiele K, Müller A, Filser J (2009) Sorption and desorption of imidazolium based ionic liquids in different soil types. Chemosphere 74:568–574.  https://doi.org/10.1016/j.chemosphere.2008.09.049CrossRefPubMedGoogle Scholar
  24. 24.
    Mehrkesh A, Karunanithi AT (2016) Life-cycle perspectives on aquatic ecotoxicity of common ionic liquids. Environ Sci Technol 50:6814–6821.  https://doi.org/10.1021/acs.est.5b04721CrossRefPubMedGoogle Scholar
  25. 25.
    Mrozik W, Jungnickel C, Skup M, Urbaszek P, Stepnowski P (2008) Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite: implications for their fate and transport in the soil environment. Environ Chem 5:299–306.  https://doi.org/10.1071/EN08015CrossRefGoogle Scholar
  26. 26.
    Mrozik W, Jungnickel C, Ciborowski T, Pitner WR, Kumirska J, Kaczyński Z, Stepnowski P (2009) Predicting mobility of alkylimidazolium ionic liquids in soils. J Soils Sediments 9:237–245.  https://doi.org/10.1007/s11368-009-0057-1CrossRefGoogle Scholar
  27. 27.
    Mrozik W, Jungnickel C, Paszkiewicz M, Stepnowski P (2013) Interaction of novel ionic liquids with soils. Water Air Soil Pollut 224.  https://doi.org/10.1007/s11270-013-1759-y
  28. 28.
    Nacham O, Clark KD, Yu H, Anderson JL (2015) Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids. Chem Mater 27:923–931.  https://doi.org/10.1021/cm504202vCrossRefGoogle Scholar
  29. 29.
    Neves CMSS, Held C, Mohammad S, Schleintz M, Coutinko JAP, Freire MG (2015) Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte perturbed-chain statistical associating fluid theory. Phys Chem Chem Phys 17:32044–32052.  https://doi.org/10.1039/c5cp06166kCrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Oelkers EH (1991) Calculation of diffusion coefficients for aqueous organic species at temperatures from 0 to 350 °C. Geochim Cosmochim Acta 55:3515–3529.  https://doi.org/10.1016/0016-7037(91)90052-7CrossRefGoogle Scholar
  31. 31.
    Othmer DF, Thakar MS (1953) Correlating diffusion coefficient in liquids. Ind Eng Chem 45:589–593.  https://doi.org/10.1021/ie50519a036CrossRefGoogle Scholar
  32. 32.
    Paternò A, Bocci G, Cruciani G, Fortuna CG, Goracci L, Sciré S, Musumarra G (2016) Cyto- and enzyme toxicities of ionic liquids modelled on the basis of VolSurf+ descriptors and their principal properties. SAR QSAR Environ Res 27:221–244.  https://doi.org/10.1080/1062936X.2016.1156571CrossRefPubMedGoogle Scholar
  33. 33.
    Ranke J, Othman A, Fan P, Müller A (2009) Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity. Int J Mol Sci 10:1271–1289.  https://doi.org/10.3390/ijms10031271CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ropel LJ (2004) Diffusion coefficient and octanol-water partition coefficients of ionic liquids. M.Sc. Thesis. University of Notre Dame, Notre DameGoogle Scholar
  35. 35.
    Rotrekl J, Storch J, Velíšek P, Schröer W, Jacquemin J, Wagner Z, Husson P, Bendova M (2017) Liquid phase behavior in systems of 1-Butyl-3-alkylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquids with water: influence of the structure of the C5 alkyl substituent. J Solut Chem 46:1456–1474.  https://doi.org/10.1007/s10953-017-0659-yCrossRefGoogle Scholar
  36. 36.
    Sarraute S, Costa Gomes MF, Pádua AAH (2009) Diffusion coefficients of 1-alkyl-3-methylimidazolium ionic liquids in water, methanol, and acetonitrile at infinite dilution. J Chem Eng Data 54:2389–2394.  https://doi.org/10.1021/je800817bCrossRefGoogle Scholar
  37. 37.
    Schramke JA, Murphy SF, Doucette WJ, Hintze WD (1999) Prediction of aqueous diffusion coefficient for organic compounds at 25° C. Chemosphere 38:2381–2406.  https://doi.org/10.1016/S0045-6535(98)00433-0CrossRefGoogle Scholar
  38. 38.
    Spafiu F, Mischie A, Ionita P, Beteringhe A, Constantinescu T, Balaban AT (2009) New alternatives for estimating the octanol/water partition coefficient and water solubility for volatile organic compounds using GLC data (Kovàts retention indices). ARKIVOC 2009:174–194.  https://doi.org/10.3998/ark.5550190.0010.a17CrossRefGoogle Scholar
  39. 39.
    Stepnowski P (2005) Preliminary assessment of the sorption of some alkyl Imidazolium Cations as used in ionic liquids to soils and sediments. Aust J Chem 58:170–173.  https://doi.org/10.1071/CH05018CrossRefGoogle Scholar
  40. 40.
    Stepnowski P (2007) Sorption, lipophilicity and partitioning phenomena of ionic liquids in environmental systems. T.M. Letcher (Ed), Thermodynamics, Solubility and Environmental Issues, 299–313.  https://doi.org/10.1016/B978-044452707-3/50018-5CrossRefGoogle Scholar
  41. 41.
    Studzińska S, Sprynskyy M, Buszewski B (2008) Study of sorption kinetics of some ionic liquids on different soil types. Chemosphere 71:2121–2128.  https://doi.org/10.1016/j.chemosphere.2008.01.013CrossRefPubMedGoogle Scholar
  42. 42.
    Tereshatov EE, Boltoeva MY, Mazan V, Volia M, Folden CM III (2016) Thallium transfer from hydrochloric acid media into pure ionic liquids. J Phys Chem B 120:2311–2322.  https://doi.org/10.1021/acs.jpcb.5b08924CrossRefPubMedGoogle Scholar
  43. 43.
    Tsuchitani S, Fukutake T, Mukai D, Miki H, Kikuchi K (2017) Unstable spreading of ionic liquids on an aqueous substrate. Langmuir 33:11040–11046.  https://doi.org/10.1021/acs.langmuir.7b01799CrossRefPubMedGoogle Scholar
  44. 44.
    Ventura SPM, Gardas RL, Gonçalves F, Coutinho JAP (2011) Ecotoxicological risk profile of ionic liquids: octanol-water distribution coefficients and toxicological data. J Chem Technol Biotechnol 86:957–963.  https://doi.org/10.1002/jctb.2606CrossRefGoogle Scholar
  45. 45.
    Vieira MO, Monteiro WF, Ligabue R, Seferin M, Chaban VV, Andreeva NA, Nascimento JF, Einloft S (2017) Ionic liquids composed of linear amphiphilic anions : synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide. J Mol Liq 241:64–73CrossRefGoogle Scholar
  46. 46.
    Yusuf AZ, Zakir A, Mustapha SI, Halima SA, Nuhu M (2014) Computational screening of ionic liquids as solvents for reprocessing of spent nuclear fuel. J Eng Technol Res 6:6–12.  https://doi.org/10.5897/JETR2013.0331CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Colloid and Lipid Science, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland

Section editors and affiliations

  • Chunxi Li
    • 1
  • Stefan Stolte
  1. 1.Chemical EngineeringBeijing University of Chemical TechnologyBeijingChina