Metrology pp 1-30 | Cite as

Accuracy and Performance Analysis of Machine Tools

  • Andreas ArchentiEmail author
  • Theodoros Laspas
Living reference work entry
Part of the Precision Manufacturing book series (PRECISION)


The key to solve manufacturing quality and productivity problems in the machining of parts is to understand the physical attributes’ geometric/kinematic, static, dynamic, and thermal behavior of machine tools. In this chapter basic definitions, error sources, and instruments and methodologies for the identification and evaluation of machine tools’ physical attributes will be outlined.

The first section presents the background and answers “why” it is important to measure and evaluate machine tools under no-load and loaded condition. Basic concepts and definitions of metrological terms will be given. In the second part, error sources in machine tools are introduced, and in the third part, instruments and methodologies for the accuracy evaluation of machine tools will be given.


Machine tool Accuracy Performance Error sources Analysis Measurement Instrumentation 


  1. ANSI/ASME B5.54:2005:R2015 Methods for performance evaluation of computer numerically controlled machining centers, American Society of Mechanical EngineersGoogle Scholar
  2. Archenti A (2011) A computational framework for control of machining system capability, PhD thesis, StockholmGoogle Scholar
  3. Archenti A, Nicolescu M (2013) Accuracy analysis of machine tools using Elastically Linked Systems. CIRP Ann 62(1):506–506CrossRefGoogle Scholar
  4. Archenti A, Österlind T, Nicolescu C (2012a) Evaluation and representation of machine tool deformations. J Mach Eng 12(1):118–129Google Scholar
  5. Archenti A, Nicolescu CM, Casterman G, Hjelm S (2012b) A new method for circular testing of machine tools under loaded condition. Proc CIRP 1:575–580CrossRefGoogle Scholar
  6. Automated Precision Inc. XD Laser. [Online]. Available: Accessed 10 May 2018
  7. BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, OIML (2012) The international vocabulary of metrology–basic and general concepts and associated terms (VIM), 3rd edn. JCGM 200:2012Google Scholar
  8. Asea, Bofors, Scania Alfa Laval (1970) Bearbeitungstests zur Untersuchung des dynamischen Maschinenverhaltens der Firmen AB Bofors, Alfa-Laval AB, ASEA and SAAB-Scania (BAS-norm). SwedenGoogle Scholar
  9. Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann 58(2):588–607CrossRefGoogle Scholar
  10. Bringmann B, Knapp W (2009) Machine tool calibration: geometric test uncertainty depends on machine tool performance. Precis Eng 33(4):524–529CrossRefGoogle Scholar
  11. Bringmann B, Küng A, Knapp W (2005) A measuring artefact for true 3d machine testing and calibration. CIRP Ann 54(1):471–474CrossRefGoogle Scholar
  12. Bryan JB (1982) A simple method for testing measuring machines and machine tools, Part 1 and 2. Precis Eng 4:61–69CrossRefGoogle Scholar
  13. Etalon AG. LaserTRACER-NG. [Online]. Available: Accessed 10 May 2018
  14. Gao X, Li B, Hong J, Guo J (2016) Stiffness modeling of machine tools based on machining space analysis. Int J Adv Manuf Technol 86(5–8):2093–2106CrossRefGoogle Scholar
  15. Ibaraki S, Hong C, Oyama C (2011) Construction of an error map of rotary axes by static R-test. In: Proceedings of the 6th international conference on leading edge manufacturing in 21st century (LEM21), vol 2011.6Google Scholar
  16. ISO 10791-6:2014(E). Test conditions for machining centres – accuracy of feeds, speeds and interpolations. ISO, GenevaGoogle Scholar
  17. ISO 10791-7:2014. Test conditions for machining centres – Part 7: accuracy of finished test pieces. ISO, GenevaGoogle Scholar
  18. ISO 230-1 (2012) Test code for machine tools – Part 1: geometric accuracy of machines operating under no-load or quasi-static conditions. International Organization for Standardization, GenevaGoogle Scholar
  19. ISO 230-2:2014(E). Test code for machine tools. Part 2. Determination of accuracy and repeatability of positioning of numerically controlled axes. ISO, GenevaGoogle Scholar
  20. ISO 230-3:2007. Test code for machine tools. Part 3. Determination of thermal effects. ISO, GenevaGoogle Scholar
  21. ISO 230-4:2005. Test code for machine tools. Part 4. Circular tests for numerically controlled machine tools. ISO, GenevaGoogle Scholar
  22. ISO 230-7:2006(E). Test code for machine tools. Part 7. Geometric accuracy of axes of rotation. ISO, GenevaGoogle Scholar
  23. Knapp W (1983a) Circular test for three-coordinate measuring machines and machine tools. Precis Eng 5(3):115–124CrossRefGoogle Scholar
  24. Liebrich T, Bringmann B, Knapp W (2009) Calibration of a 3D-ball plate. Precis Eng 33(1):1–6CrossRefGoogle Scholar
  25. Lopez de Lacalle L, Lamikiz A (2009) Machine tools for high performance machining. Springer, LondonCrossRefGoogle Scholar
  26. MEAX. Machine Tool Calibration with STREVEL | MEAX MT30. [Online]. Available: Accessed 10 May 2018
  27. Optodyne Inc. [Online]. Available: Accessed 10 July 2018
  28. Österlind T (2013) An analysis of machining system capability and its link with machined component quality. KTH Royal Institute of Technology, StockholmGoogle Scholar
  29. Rensihaw PLC (2016) Renishaw unveils the new XM-60 multi-axis calibrator. [Online]. Available: Accessed 09 May 2018
  30. Rensihaw PLC. XL-80 laser system. [Online]. Available: Accessed 09 May 2018
  31. Sadasivam L, Archenti A, Sandberg U (2018) Machine tool ability representation: a review. J Mach Eng 18(2):5–16CrossRefGoogle Scholar
  32. Sartori S, Zhang G (1995) Geomteric error measurement and compensation of machines. Ann CIRP 44(2):599–609CrossRefGoogle Scholar
  33. Schellekens P, Rosielle N (1998) Design for precision: current status and trends. Ann CIRP 47(2):557–586CrossRefGoogle Scholar
  34. Schneider C (2004) LaserTracer – a new type of self tracking laser interferometer. In: IWAA 2004. CERN, GenevaGoogle Scholar
  35. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines – an update. CIRP Ann 57(2):660–675CrossRefGoogle Scholar
  36. SIOS MEßTECHNIK GmbH. Calibration Interferometer. [Online]. Available: Accessed 10 May 2018
  37. Slocum A (1992) Precision machine design. Prentice Hall, Englewood CliffsGoogle Scholar
  38. Smith GT (2016) Machine tool metrology - an industrial handbook. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  39. Stephenson DA, Agapiou JS (2016) Metal cutting theory and practice, 3rd edn. CRC Press Taylor, Bosa RocaCrossRefGoogle Scholar
  40. Weck M, Brecher C (2006) Werkzeugmaschinen 5 Messtechnische Untersuchung und Beurteilung, dynamische Stabilität. Springer, BerlinGoogle Scholar
  41. Ziegert J, Mize C (1994) Laser ball bar: a new instrument for machine tool metrology. Precis Eng 16(4):259–267CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations