Advertisement

Metrology pp 1-22 | Cite as

High-Speed Measurement of Complex Shaped Parts by Laser Triangulation for In-line Inspection

  • Alexander Schöch
  • Enrico SavioEmail author
Living reference work entry
Part of the Precision Manufacturing book series (PRECISION)

Abstract

Measurement of complex shaped parts is of interest in many applications. Complex functional freeform surfaces may have a great influence on the performances of a product. Geometrical deviations in manufacturing can cause waste of large quantities of energy. Testing of parts having freeform surfaces is a key activity during the development of products with better performances. Depending on the workpiece shape, its manufacturing process, and tolerance limits, it is required to measure freeforms densely, for sufficiently high probability to capture crucial regions. This often requires fast measurement processes to keep measurement time feasible low. Fast measurements can be obtained by increasing the speed of acquiring a single point and/or parallelizing this process by acquiring multiple points at the same time. A brief overview of methods with high measurement speed is given. The concept of optical triangulation is discussed in detail, and case study is presented to illustrate an implementation in industry of a dedicated measuring system for high-speed measurement of complex shapes.

Keywords

Freeform Complex shape Optical measurement Optical triangulation Laser triangulation High-speed measurement Multi-sensor measurement In-line inspection Dense sampling Industrial application 

Notes

Acknowledgments

The authors acknowledge the financial support in the HOTGAUGE project (E!6692), funded in the framework of the Eurostars Programme, and the support and advice from colleagues at authors’ institutions, as well as industrial partners Zumbach Electronic AG (Switzerland) and Pietro Rosa TBM s.r.l. (Italy).

References

  1. Bernstein J (2011) Optisches Multi-Sensor-Messverfahren zur dimensionellen In-line-Messung von Strangprofilen im Fertigungsprozess, volume Bd. 23 of Berichte aus dem Lehrstuhl Qualitätsmanagement und Fertigungsmeßtechnik. Friedrich-Alexander-Universität Erlangen-Nürnberg, Shaker, Aachen. ISBN 978-3844003451Google Scholar
  2. Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35(9):1566–1573CrossRefGoogle Scholar
  3. Clarke TA, Grattan KTV, Lindsey NE, Grover CP (1991) Laser-based triangulation techniques in optical inspection of industrial structures. In: San Diego – DL Tentative, SPIE proceedings, SPIE, pp 474–486Google Scholar
  4. Estler WT, Edmundson KL, Peggs GN, Parker DH (2002) Large-scale metrology – an update. CIRP Ann Manuf Technol 51(2):587–609CrossRefGoogle Scholar
  5. Fisher RB, Naidu DK (1996) A comparison of algorithms for subpixel peak detection. In: Sanz JLC (ed) Image technology. Springer, Berlin/Heidelberg, pp 385–404. ISBN 978-3-642-63528-1CrossRefGoogle Scholar
  6. Ghiotti A, Schöch A, Salvadori A, Carmignato S, Savio E (2015) Enhancing the accuracy of high-speed laser triangulation measurement of freeform parts at elevated temperature. CIRP Ann Manuf Technol 64/1:499–502.  https://doi.org/10.1016/j.cirp.2015.04.012CrossRefGoogle Scholar
  7. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge/New York, p 2. ISBN 0521540518zbMATHGoogle Scholar
  8. Hexagon Manufacturing Intelligence (2018) http://www.hexagonmi.com
  9. Hocken RJ, Pereira PH (2012) Coordinate measuring machines and systems, volume 76 of Manufacturing engineering and materials processing, 2nd edn. CRC Press, Boca Raton. ISBN 978-1574446524Google Scholar
  10. Isheil A, Gonnet J-P, Joannic D, Fontaine J-F (2011) Systematic error correction of a 3D laser scanning measurement device. Opt Lasers Eng 49(1):16–24CrossRefGoogle Scholar
  11. Jiang X, Scott PJ, Whitehouse DJ, Blunt L (2007) Paradigm shifts in surface metrology. Part II. The current shift. Proc R Soc A 463(2085):2071–2099CrossRefGoogle Scholar
  12. Keferstein CP (2015) Fertigungsmesstechnik: praxisorientierte Grundlagen, moderne Messverfahren. Vieweg + Teubner, Wiesbaden, 8. auflage edition. ISBN 978-3-8348-2582-7Google Scholar
  13. Kunzmann H, Pfeifer T, Schmitt R, Schwenke H, Weckenmann A (2005) Productive metrology – adding value to manufacture. CIRP Ann Manuf Technol 54(2):155–168CrossRefGoogle Scholar
  14. Nikon metrology (2018) http://www.nikonmetrology.com
  15. Nishiguchi T, Koizumi Y, Maeda Y, Masuda M, Nagayama K, Okamura K (1991) Improvement of productivity in aspherical precision machining with insitu metrology. CIRP Ann Manuf Technol 40(1):367–370CrossRefGoogle Scholar
  16. Optris GmbH (2018) http://www.optris.de
  17. Pfeifer T (2002) Production metrology. Oldenbourg Wissenschaftsverlag, Berlin/Boston. ISBN 978-3-486-81042-4CrossRefGoogle Scholar
  18. Pietro rosa TBM srl (2018) http://www.pietrorosatbm.it/
  19. Savio E (2012) A methodology for the quantification of value-adding by manufacturing metrology. CIRP Ann Manuf Technol 61(1):503–506CrossRefGoogle Scholar
  20. Savio E, de Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56(2):810–835CrossRefGoogle Scholar
  21. Savio E, de Chiffre L, Carmignato S, Meinertz J (2016) Economic benefits of metrology in manufacturing. CIRP Ann Manuf Technol 65(1):495–498CrossRefGoogle Scholar
  22. Schöch A (2016) Quality control of freeform parts at elevated temperature. PhD thesis, University of Padua. http://paduaresearch.cab.unipd.it/9192/
  23. Schöch A, Salvadori A, Germann I, Balemi S, Bach C, Ghiotti A, Carmignato S, Maurizio AL, Savio E (2014) Fast measurement of freeform parts at elevated temperature using laser-triangulation principle. In: IMEKO LMPMIGoogle Scholar
  24. Schöch A, Salvadori A, Germann I, Balemi S, Bach C, Ghiotti A, Carmignato S, Maurizio AL, Savio E (2015) High-speed measurement of complex shaped parts at elevated temperature by laser triangulation. Int J Autom Technol 9(9):558–566CrossRefGoogle Scholar
  25. Schott AG (2018) www.schott.com
  26. Schwenke H, Neuschaefer-Rube U, Pfeifer T, Kunzmann H (2002) Optical methods for dimensional metrology in production engineering. CIRP Ann Manuf Technol 51(2):685–699CrossRefGoogle Scholar
  27. Weckenmann A (2012) Koordinatenmesstechnik: flexible Strategien für funktions- und fertigungsgerechtes Prüfen. Hanser, München, 2., vollständig überarb. aufl edition. ISBN 978-3-446-40739-8Google Scholar
  28. Weckenmann A, Estler T, Peggs G, McMurtry D (2004) Probing Systems in Dimensional Metrology. CIRP Ann Manuf Technol 53(2):657–684CrossRefGoogle Scholar
  29. Weckenmann A, Jiang X, Sommer K-D, Neuschaefer-Rube U, Seewig J, Shaw L, Estler T (2009) Multisensor data fusion in dimensional metrology. CIRP Ann Manuf Technol 58(2):701–721CrossRefGoogle Scholar
  30. Xi F, Liu Y, Feng H-Y (2001) Error compensation for three-dimensional line laser scanning data. Int J Adv Manuf Technol 18(3):211–216CrossRefGoogle Scholar
  31. Zhang Y, Han J, Fu X, Zhang F (2014) Measurement and control technology of the size for large hot forgings. Measurement 49:52–59CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Production Metrology, Materials and OpticsNTB University for TechnologyBuchsSwitzerland
  2. 2.Department of Industrial EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations