Fluorination

Living Edition
| Editors: Jinbo Hu, Teruo Umemoto

Aliphatic [18F]Fluorination Chemistry for Positron Emission Tomography

  • Jian Rong
  • Steven H. Liang
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-1855-8_38-1

Introduction

Positron emission tomography (PET) is a noninvasive medical imaging technique that has been rapidly developing in the past several decades. By imaging the uptake and distribution of a radiolabeled molecule, PET is an important diagnostic tool for investigating diverse types of diseases in preclinical and clinical research and drug development. Compared to other imaging techniques, such as magnetic resonance imaging (MRI), computed tomography (CT), X-ray, or ultrasound which provide structural and anatomical information, PET provides quantitative functional information about biological process at the molecular level. Following by in vivo injection of molecules labeled with positron-emitters, PET imaging is accomplished by the detection of two gamma ray photons (511 keV, ~180° apart) from annihilation of a positron (from β+-decay from radiolabeled molecules) and an electron in proximity. Frequently used positron-emitting radionuclides include carbon-11 (11C, half-life...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgement

S.H.L is a recipient of NIH career development award (DA038000) and Early Career Award in Chemistry of Drug Abuse and Addiction (ECHEM, DA043507) from the National Institute on Drug Abuse.

References

  1. 1.
    Bergman J, Solin O (1997) Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol 24:677-683CrossRefGoogle Scholar
  2. 2.
    Ehrenkaufer RE, MacGregor RR (1983) Synthesis of [18F]perchloryl fluoride and its reactions with functionalized aryl lithiums. Int J Appl Radiat Isot 34 (3):613-615CrossRefGoogle Scholar
  3. 3.
    Neirinckx RD, Lambrecht RM, Wolf AP (1978) Cyclotron isotopes and radiopharmaceuticals-XXV: an anhydrous 18F-fluorination intermediate: trifluoromethyl hypofluorite. Int J Appl Radiat Isot 29:323-327CrossRefGoogle Scholar
  4. 4.
    Chirakal R, Firnau G, Couse J, Garnett ES (1984) Radiofluorination with 18F-labelled acetyl hypofluorite: [18F]L-6-fluorodopa. Int J Appl Radiat Isot 35 (7):651-653CrossRefGoogle Scholar
  5. 5.
    Sood S, Rirnau G, S. GE (1983) Radiofluorination with xenon difluoride: a new high yield synthesis of [18F]2-fluoro-2-deoxy-D-glucose. Int J Appl Radiat Isot 34 (4):743-745CrossRefPubMedGoogle Scholar
  6. 6.
    Schrobilgen G, Firnau G, Chirakal R, S. GE (1981) Synthesis of [18F]XeF, a novel agent for the preparation of 18F-radiopharmaceuticals. J Chem Soc Chem Commun 0:198-199Google Scholar
  7. 7.
    Oberdorfer F, Hofmann E, Maier-Borst W (1988) Preparation of a new 18F-labelled precursor: 1-[18F]fluoro-2-pyridone. Int J Radiat Appl Instrum Part A 39 (7):685-688Google Scholar
  8. 8.
    Teare H, Robins EG, Årstad E, Luthra SK, Gouverneur V (2007) Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide. Chem Commun 43 (23):2330-2332Google Scholar
  9. 9.
    Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V (2010) Radiosynthesis and evaluation of [18F]Selectfluor bis(triflate). Angew Chem Int Ed 49:6821-6824CrossRefGoogle Scholar
  10. 10.
    Stenhagen IS, Kirjavainen AK, Forsback SJ, Jorgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur V (2013) [18F]fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): application to 6-[18F]fluoro-L-DOPA. Chem Commun 49:1386-1388CrossRefGoogle Scholar
  11. 11.
    Oberdorfer F, Hofmann E, Maier-Borst W (1988) Preparation of 18F-labeled N-fluoropyridinium triflate. J Label Comp Radiopharm 25:999-1005CrossRefGoogle Scholar
  12. 12.
    Ido T, Wan C-N, Casella V, Fowler JS, P. WA (1978) Labeled 2-deoxy-D-glucose analogs—18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Comp Radiopharm 14:175-183CrossRefGoogle Scholar
  13. 13.
    Dolbier WR, Li A-R, Koch CJ, Shiue C-Y, Kachur AV (2001) [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl Radiat Isot 54:73-80CrossRefPubMedGoogle Scholar
  14. 14.
    Nodwell MB, Yang H, Colovic M, Yuan Z, Merkens H, Martin RE, Benard F, Schaffer P, Britton R (2017) (18)F-Fluorination of unactivated C-H bonds in branched aliphatic amino acids: direct synthesis of oncological positron emission tomography imaging agents. J Am Chem Soc 139:3595-3598CrossRefPubMedGoogle Scholar
  15. 15.
    Hamacher FK, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235-238.PubMedGoogle Scholar
  16. 16.
    Tang G, Wang M, Tang X, Gan M, Luo L (2005) Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol 32 (5):553-558CrossRefPubMedGoogle Scholar
  17. 17.
    Mukherjee J, Yang Z-Y, Das MK, Brown T (1995) Fluorinated benzamide neuroleptics-III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol 22 (3):283-296CrossRefPubMedGoogle Scholar
  18. 18.
    Machulla H-J, Blocher A, Kuntzsch M, Piert M, Wei R, R. GJ (2000) Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Ch 243 (3):843-846CrossRefGoogle Scholar
  19. 19.
    Mori T, Kasamatsu S, Mosdzianowski C, Welch MJ, Yonekura Y, Fujibayashi Y (2006) Automatic synthesis of 16α-[18F]fluoro-17β-estradiol using a cassette-type [18F]fluorodeoxyglucose synthesizer. Nucl Med Biol 33 (2):281-286CrossRefPubMedGoogle Scholar
  20. 20.
    Kim DW, Ahn D-S, Oh Y-H, Lee S, Kil HS, Oh SJ, Kim JS, Ryu JS, Moon DH, Chi DY (2003) A new nucleophilic fluorine-18 labeling method for aliphatic mesylates: reaction in ionic liquids shows tolerance for water. Nucl Med Biol 30 (4):345-350CrossRefGoogle Scholar
  21. 21.
    Kim DW, Ahn D-S, Young-Ho O, Sungyul L, Seup KH, Jun OS, Ju LS, Seung KJ, Sook RJ, Hyuk MD, Yoon CD (2006) A new class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J Am Chem Soc 128:16394-16397CrossRefGoogle Scholar
  22. 22.
    Chaly T, Dhawan V, Kazumata K, Antonini A, Margouleff C, Dahl JR, Belakhlef A, Margouleff D, Yee A, Wang S, Tamqnan G, Neumeyer JL, Eidelberg D (1996) Radiosynthesis of [18F]N-3-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl)nortropane and the first human study with positron emission tomography. Nucl Med Biol 23:999-1004CrossRefPubMedGoogle Scholar
  23. 23.
    Nielsen MK, Ugaz CR, Li W, Doyle AG (2015) PyFluor: A low-cost, stable, and selective deoxyfluorination reagent. J Am Chem Soc 137 (30):9571-9574CrossRefPubMedGoogle Scholar
  24. 24.
    Liang SH, Vasdev N (2014) Csp3-18F bond formation by transition-metal-based [18F]fluorination. Angew Chem Int Ed 53:11416-11418CrossRefGoogle Scholar
  25. 25.
    Hintermann L, Läng F, Maire P, Togni A (2006) Interactions of cationic palladium(II)- and platinum(II)-η3-allyl complexes with fluoride: is asymmetric allylic fluorination a viable reaction? Eur J Inorg Chem 2006 (7):1397-1412CrossRefGoogle Scholar
  26. 26.
    Hollingworth C, Hazari A, Hopkinson MN, Tredwell M, Benedetto E, Huiban M, Gee AD, Brown JM, Gouverneur V (2011) Palladium-catalyzed allylic fluorination. Angew Chem Int Ed 50:2613-2617CrossRefGoogle Scholar
  27. 27.
    Topczewski JJ, Tewson TJ, Nguyen HM (2011) Iridium-catalyzed allylic fluorination of trichloroacetimidates. J Am Chem Soc 133 (48):19318-19321CrossRefPubMedGoogle Scholar
  28. 28.
    Benedetto E, Tredwell M, Hollingworth C, Khotavivattana T, Brown JM, Gouverneur V (2013) Regio- and stereoretentive synthesis of branched, linear (E)- and (Z)-allyl fluorides from allyl carbonates under Ir-catalysis. Chem Sci 4 (1):89-96CrossRefGoogle Scholar
  29. 29.
    Huang X, Liu W, Ren H, Neelamegam R, Hooker JM, Groves JT (2014) Late stage benzylic C-H fluorination with [18F]fluoride for PET imaging. J Am Chem Soc 136 (19):6842-6845CrossRefPubMedGoogle Scholar
  30. 30.
    Liu W, Huang X, Placzek MS, Krska SW, McQuade P, Hooker JM, Groves JT (2018) Site-selective 18F fluorination of unactivated C–H bonds mediated by a manganese porphyrin. Chem Sci 9:1168-1172CrossRefGoogle Scholar
  31. 31.
    Kalow JA, Doyle AG (2010) Enantioselective ring opening of epoxides by fluoride anion promoted by a cooperative dual-catalyst system. J Am Chem Soc 132:3268-3269CrossRefPubMedGoogle Scholar
  32. 32.
    Graham TJ, Lambert RF, Ploessl K, Kung HF, Doyle AG (2014) Enantioselective radiosynthesis of positron emission tomography (PET) tracers containing [18F]fluorohydrins. J Am Chem Soc 136 (14):5291-5294CrossRefPubMedGoogle Scholar
  33. 33.
    Onega M, Winkler M, O’Hagan D (2009) Fluorinase: a tool for the synthesis of 18F-labeled sugars and nucleosides for PET. Future Med Chem 1 (5):865-873CrossRefPubMedGoogle Scholar
  34. 34.
    Martarello L, Schaffrath C, Deng H, Gee AD, Lockhart A, O’Hagan D (2003) The first enzymatic method for C-18F bond formation: the synthesis of 5′-[18F]-fluoro-5′-deoxyadenosine for imaging with PET. J Label Comp Radiopharm 46 (13):1181-1189CrossRefGoogle Scholar
  35. 35.
    Deng H, Cobb SL, Gee AD, Lockhart A, Martarello L, McGlinchey RP, O’Hagan D, Onega M (2006) Fluorinase mediated C-18F bond formation, an enzymatic tool for PET labelling. Chem Commun 42 (6):652-654CrossRefGoogle Scholar
  36. 36.
    Yang B, Chansaenpak K, Wu H, Zhu L, Wang M, Li Z, Lu H (2017) Silver-promoted (radio)fluorination of unsaturated carbamates via a radical process. Chem Commun 53 (24):3497-3500CrossRefGoogle Scholar
  37. 37.
    Cortés González MA, Nordeman P, Bermejo Gómez A, Meyer DN, Antoni G, Schou M, Szabó KJ (2018) [18F]fluoro-benziodoxole: a no-carrier-added electrophilic fluorinating reagent. Rapid, simple radiosynthesis, purification and application for fluorine-18 labelling. Chem Commun 54 (34): 4286-4289CrossRefGoogle Scholar
  38. 38.
    Zhang M-R, Suzuki K (2007) [18F]Fluoroalkyl agents: synthesis, reactivity and application for development of PET ligands in molecular imaging. Curr Top Med Chem 7:1817-1828CrossRefPubMedGoogle Scholar
  39. 39.
    Kniess T, Laube M, Brust P, Steinbach J (2015) 2-[18F]Fluoroethyl tosylate – a versatile tool for building 18F-based radiotracers for positron emission tomography. MedChemComm 6 (10):1714-1754CrossRefGoogle Scholar
  40. 40.
    van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ (2017) Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 46 (15):4709-4773CrossRefGoogle Scholar
  41. 41.
    Pretze M, Pietzsch D, Mamat C (2013) Recent trends in bioorthogonal click-radiolabeling reactions using fluorine-18. Molecules 18 (7):8618-8665CrossRefPubMedGoogle Scholar
  42. 42.
    Kettenbach K, Schieferstein H, Ross TL (2014) 18F-labeling using click cycloadditions. Biomed Res Int 2014:361329CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Nuclear Medicine and Molecular Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA