Advertisement

Crystalline Fibers for Fiber Lasers and Amplifiers

  • Sheng-Lung HuangEmail author
Living reference work entry

Abstract

Fiber lasers and amplifiers have revolutionary advancements in the past 20 years. Using crystalline core for fiber based devices is an extension to explore what glass fibers may have limitations. The mechanical strength and heat dissipation capability of crystalline materials makes them eminently suitable for high power or high brightness applications. To utilize these crystalline advantages, it is crucial to have high quality cladding for low transmission loss and low core/clad interface defects. Various glass-cladded crystalline fiber configurations and formation mechanisms are described. After cladding formation, the heterogeneous crystal/glass interface could result in residual strain in the crystalline core, which may deteriorate the active ion emission cross section. Proper design of the crystal waveguide structure with thermal treatment could effectively mitigate the strain-induced degradation. In this chapter, the growth thermodynamics, ion segregation, and optical transmission and amplification modeling are addressed. As an introduction, the yttrium aluminum garnet (YAG) and sapphire crystalline hosts with broadband active ion dopants will be emphasized even though quite a variety of crystals have been grown into fibers since the inception of the crystalline fiber technology 40 years ago. At present, broad and bright continuous-wave light sources with a center wavelength from visible to near infrared range have been well developed. Application wise, they could be adapted as active devices for biomedical imaging, optical metrology, as well as optical communications.

References

  1. I.D. Abella, C.H. Townes, Mode characteristics and coherence in optical ruby masers. Nature 192, 957 (1961)CrossRefGoogle Scholar
  2. R.L. Aggarwal, A. Sanchez, M.M. Stuppi, R.E. Fahey, A.J. Strauss, W.R. Rapoport, C.P. Khattak, Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3. IEEE J. Quantum Electron. 24, 1003 (1988)CrossRefGoogle Scholar
  3. A.A. Anderson, R.W. Eason, L.M.B. Hickey, M. Jelinek, C. Grivas, D.S. Gill, N.A. Vainos, Ti:sapphire planar waveguide laser grown by pulsed laser deposition. Opt. Lett. 22, 1556 (1997)CrossRefGoogle Scholar
  4. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.P. Salathé, M. Pollnau, Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire. Appl. Phys. Lett. 85, 1122 (2004)CrossRefGoogle Scholar
  5. R. Autrata, P. Schauer, J. Kvapil, J. Kvapil, A single crystal of YAG-new fast scintillator in SEM. J. Phys. E11, 707 (1978)Google Scholar
  6. V. Bachmann, C. Ronda, A. Meijerink, Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 21, 2077 (2009)CrossRefGoogle Scholar
  7. G. Blasse, A. Bril, A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12–Ce3+. Appl. Phys. Lett. 11, 53 (1967)CrossRefGoogle Scholar
  8. N.I. Borodin, V.A. Zhitnyuk, A.G. Okhrimchuk, A.V. Shestakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1500 (1990.) (Eng)Google Scholar
  9. C.A. Burrus, L.A. Coldren, Growth of single-crystal sapphire-clad ruby fibers. Appl. Phys. Lett. 31, 383 (1977)CrossRefGoogle Scholar
  10. C.A. Burrus, J. Stone, Single-crystal fiber optical devices: a Nd:YAG fiber laser. Appl. Phys. Lett. 26, 318 (1975)CrossRefGoogle Scholar
  11. C.A. Burrus, J. Stone, A.G. Dentai, Room-temperature 1.3 μm CW operation of a glass-clad Nd:YAG single-crystal fiber laser end pumped with a single LED. Electron. Lett. 12, 600 (1976)CrossRefGoogle Scholar
  12. B. Chalmers, H.E. Labelle Jr., A.I. Mlavsky, Edge-defined, film-fed crystal growth. J. Cryst. Growth 13–14, 84 (1972)CrossRefGoogle Scholar
  13. C.L. Chang, S.L. Huang, C.Y. Lo, K.Y. Huang, C.W. Lan, W.H. Cheng, P.Y. Chen, Simulation and experiment on laser-heated pedestal growth of chromium-doped yttrium-aluminum-garnet single-crystal fiber. J. Cryst. Growth 318, 674 (2001)CrossRefGoogle Scholar
  14. P.Y. Chen, C.L. Chang, K.Y. Huang, C.W. Lan, W.H. Cheng, S.L. Huang, Experiment and simulation on interface shapes of an yttrium aluminium garnet miniature molten zone formed using the laser-heated pedestal growth method for single-crystal fibers. J. Appl. Crystallogr. 42, 553 (2009)CrossRefGoogle Scholar
  15. Y. Chi, H. Yang, S. Liu, M. Li, L. Wang, G. Zou, Compression ratio and red shift of the R1 line for YAG:Cr. High Pressure Res. 3, 153 (1990)CrossRefGoogle Scholar
  16. A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R.P. Salathé, R.W. Eason, C. Grivas, D.P. Shepherd, Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide. Appl. Phys. B Lasers Opt. 75, 15 (2002)CrossRefGoogle Scholar
  17. M.J.F. Digonnet, C.J. Gaeta, D. O’Meara, H.J. Shaw, Clad Nd:YAG fibers for laser applications. IEEE J. Lightwave Technol. LT-5, 642 (1987)CrossRefGoogle Scholar
  18. P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds. J. Lumin. 91, 155 (2000)CrossRefGoogle Scholar
  19. J.L. Duranceau, R.A. Brown, Thermal-capillary analysis of small-scale floating zone: steady-state calculations. J. Cryst. Growth 75, 367 (1986)CrossRefGoogle Scholar
  20. H. Eilers, W.M. Dennis, W.M. Yen, S. Kuck, K. Peterman, G. Huber, W. Jia, Performance of a Cr:YAG laser. IEEE J. Quantum Electron. 29, 2508 (1993)CrossRefGoogle Scholar
  21. R.S. Feigelson, Pulling optical fibers. J. Cryst. Growth 79, 669 (1986)CrossRefGoogle Scholar
  22. M.M. Fejer, J.L. Nightingale, G.A. Magel, R.L. Byer, Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers. Rev. Sci. Instrum. 55, 1791 (1984)CrossRefGoogle Scholar
  23. C. Grivas, T.C. May-Smith, D.P. Shepherd, R.W. Eason, M. Pollnau, M. Jelinek, Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti:sapphire waveguides. Appl. Phys. A Mater. Sci. Process. 79, 1195 (2004)CrossRefGoogle Scholar
  24. C. Grivas, D.P. Shepherd, T.C. May-Smith, R.W. Eason, Single-transverse-mode Ti:sapphire rib waveguide laser. Opt. Express 13, 210 (2005)CrossRefGoogle Scholar
  25. C. Grivas, D.P. Shepherd, R.W. Eason, L. Laversenne, P. Moretti, C.N. Borca, M. Pollnau, Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation. Opt. Lett. 31, 3450 (2006)CrossRefGoogle Scholar
  26. C. Grivas, C. Corbari, G. Brambilla, P.G. Lagoudakis, Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses. Opt. Lett. 37, 46302 (2012)CrossRefGoogle Scholar
  27. D. Hamilton, S. Gayen, G. Pogatshnik, R. Ghen, Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12. Phys. Rev. B 39, 8807 (1989)CrossRefGoogle Scholar
  28. L.M.B. Hickey, V. Apostolopoulos, R.W. Eason, J.S. Wilkinson, Diffused Ti:sapphire channel-waveguide lasers. J. Opt. Soc. Am. B 21, 1452 (2004)CrossRefGoogle Scholar
  29. K. Y. Hsu, Glass-clad crystal fibers based broadband light sources, Ph.D. dissertation, 2011Google Scholar
  30. K.Y. Hsu, D.Y. Jheng, Y.H. Liao, T.S. Ho, C.C. Lai, S.L. Huang, Diode- laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source. IEEE Photon. Technol. Lett. 24(10), 854 (2012)CrossRefGoogle Scholar
  31. K.Y. Hsu, M.H. Yang, D.Y. Jheng, C.C. Lai, S.L. Huang, K. Mennemann, V. Dietrich, Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes. Opt. Mater. Express 3, 813 (2013)CrossRefGoogle Scholar
  32. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178 (1991)CrossRefGoogle Scholar
  33. K.Y. Huang, K.Y. Hsu, D.Y. Jheng, W.J. Zhuo, P.Y. Chen, P.S. Yeh, S.L. Huang, Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique. Opt. Express 16, 12264 (2008a)CrossRefGoogle Scholar
  34. K.Y. Huang, K.Y. Hsu, S.L. Huang, Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers. IEEE/OSA J. Lightwave Technol. 26, 1632 (2008b)CrossRefGoogle Scholar
  35. T.P. Hughes, K.M. Young, Mode sequences in ruby laser emission. Nature 196, 332 (1962)CrossRefGoogle Scholar
  36. R.R. Jacobs, W.F. Krupke, M.J. Weber, Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers. Appl. Phys. Lett. 33, 410 (1978)CrossRefGoogle Scholar
  37. M. R. Kokta, Process for enhancing Ti:Al2O3 tunable laser crystal fluorescence by annealing, US Patent No. 4,587,035, 1986Google Scholar
  38. M. R. Kokta, Process for enhancing fluorescence of Ti:Al2O3 tunable laser crystals, US Patent No. 4,836,953, 1989Google Scholar
  39. S. Kück, Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl. Phys. B Lasers Opt. 72, 515 (2001)CrossRefGoogle Scholar
  40. H.E. LaBelle Jr., A.I. Mlavsky, Growth of Sapphire filaments from the melt. Nature 216, 574 (1967)CrossRefGoogle Scholar
  41. H.E. LaBelle Jr., A.I. Mlavsky, Growth of controlled profile crystals from the melt: part I – Sapphire filaments. Mater. Res. Bull. 6, 571 (1971)CrossRefGoogle Scholar
  42. C.C. Lai, H.J. Tsai, K.Y. Huang, K.Y. Hsu, Z.W. Lin, K.D. Ji, W.J. Zhuo, S.L. Huang, Cr4+:YAG double-clad crystal fiber laser. Opt. Lett. 33, 2919 (2008)CrossRefGoogle Scholar
  43. C.C. Lai, Y.S. Lin, K.Y. Huang, S.L. Huang, Study on the core/cladding interface in Cr:YAG double-clad crystal fibers grown by the co-drawing laser heated pedestal growth method. J. Appl. Phys. 108, 054308 (2010)CrossRefGoogle Scholar
  44. C.W. Lan, S. Kou, Thermocapllary flow and melt/solid interfaces in floatinf-zone crystal growth under microgravity. J. Cryst. Growth 102, 1043 (1990)CrossRefGoogle Scholar
  45. C.W. Lan, C.Y. Tu, Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals. J. Cryst. Growth 233, 523 (2001)CrossRefGoogle Scholar
  46. L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, J. Mugnier, Designable buried waveguides in sapphire by proton implantation. Appl. Phys. Lett. 85, 5167 (2004)CrossRefGoogle Scholar
  47. Y.S. Lin, C.C. Lai, K.Y. Huang, J.C. Chen, C.Y. Lo, S.L. Huang, T.Y. Chang, J.Y. Ji, P. Shen, Nanostructure formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal. J. Cryst. Growth 289, 515 (2006)CrossRefGoogle Scholar
  48. Y.S. Lin, T.C. Cheng, C.C. Tsai, K.Y. Hsu, D.Y. Jheng, C.Y. Lo, P.S. Yeh, S.L. Huang, High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber. IEEE Photon. Technol. Lett. 22, 1494 (2010)CrossRefGoogle Scholar
  49. C. Y. Lo, Growth, characterization, and applications of doped-YAG single-crystal fibers, Ph.D. dissertation, 1994Google Scholar
  50. C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, S.L. Huang, Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission. Opt. Lett. 29, 439 (2004)CrossRefGoogle Scholar
  51. C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, P.S. Yeh, Double-clad Cr4+:YAG crystal fiber amplifier. Opt. Lett. 30, 129 (2005)CrossRefGoogle Scholar
  52. J.D. Love, W.M. Henry, W.J. Stewart, R.J. Black, S. Lacroix, F. Gonthier, Tapered single-mode fibres and devices. IEE Proc. J. Optoelecton. 138, 343 (1991)CrossRefGoogle Scholar
  53. D. Marcuse, Theory of dielectric optical waveguides (Academic Press, New York, 1991)Google Scholar
  54. P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B: Opt. Phys. 3, 125 (1986)CrossRefGoogle Scholar
  55. N. Ohnish, T. Yao, A novel growth technique for single-crystal fibers: the micro-Czochralski (μ-CZ) method. Jap. J. Appl. Phys. 28, L278 (1989)CrossRefGoogle Scholar
  56. E.P. Ostby, L. Yang, K.J. Vahala, Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process. Opt. Lett. 32, 2650 (2007)CrossRefGoogle Scholar
  57. D.P.S. Saini, Y. Shimoji, R.S.F. Chang, N. Djeu, Cladding of a crystal fiber by high-energy ion implantation. Opt. Lett. 16, 1074 (1991)CrossRefGoogle Scholar
  58. A. Sennaroglu, C.R. Pollock, H. Nathel, Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser. Opt. Lett. 19, 390 (1994)CrossRefGoogle Scholar
  59. Y.R. Shen, U. Hömmerich, K.L. Bray, Observation of the 1E state of Cr4+ in yttrium aluminum garnet. Phys. Rev. B Condens. Matter 56, R473 (1997)CrossRefGoogle Scholar
  60. I.T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, A.V. Shestakov, Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser. Opt. Lett. 24, 1578 (1999)CrossRefGoogle Scholar
  61. J.L. Stevenson, R.B. Dyott, Optical fiber waveguide with a single-crystal core. Electron. Lett. 10, 449 (1974)CrossRefGoogle Scholar
  62. S. Sudo, A. Cordova-Plaza, R.L. Byer, H.J. Shaw, MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding. Opt. Lett. 12, 938 (1987)CrossRefGoogle Scholar
  63. J.C. Walling, O.G. Jenssen, H.P. Jenssen, R.C. Mirris, E.W. O’Dell, Tunable alexandrite lasers. IEEE J. Quantum Electron. QE-16, 1702 (1980)Google Scholar
  64. S.C. Wang, T.I. Yang, D.Y. Jheng, C.Y. Hsu, T.T. Yang, T.S. Ho, S.L. Huang, Broadband and high-brightness light source: glass-clad Ti:sapphire crystal fiber. Opt. Lett. 40, 5594 (2015)CrossRefGoogle Scholar
  65. L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, S. Ying, Growth and laser properties of Ti:sapphire single crystal fibres. Electron. Lett. 31, 1151 (1995)CrossRefGoogle Scholar
  66. D.H. Yoon, I. Yonenaga, T. Fukuda, N. Ohnishi, Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method. J. Cryst. Growth 142, 339 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate Institute of Photonics and Optoelectronics, and Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan

Section editors and affiliations

  • Kyunghwan Oh
    • 1
  1. 1.Department of Physics and Applied PhysicsYonsei UniversitySeoulSouth Korea

Personalised recommendations