Powder Process for Fabrication of Rare Earth-Doped Fibers for Lasers and Amplifiers

Living reference work entry


The use of powder-based technologies for the production of rare earth (RE)-doped fibers and preforms is discussed. Although these technologies cannot compete with vapor-based technologies such as modified chemical vapor deposition (MCVD) with respect to purity of the silica material obtained, they offer a high degree of versatility with respect to the material composition and the obtainable topology of microstructured fibers.

The production of core rods starting from powder technologies and the powder-in-tube method are discussed. The challenges when using powder-based technologies lie in obtaining homogeneously doped and co-doped material as well as avoiding scattering by ion clusters. To reach a homogeneous distribution of dopants, the use of the sol-gel technology is discussed. Especially the incorporation of aluminum (Al) and phosphorus (P) to enhance the solubility of the rare earth activators as well as to control the index raise is found to be considerably eased.

Considerations from materials science point of view are made and serve as guidelines to understand the process. In this context, extremely precise characterization techniques such as wavelength dispersive x-ray fluorescence (WDXRF), scanning transmission electron microscopy with high-angle annular dark-field (STEM-HAADF), and differential thermal analysis (DTA) are discussed in order to mature the tuning of glass composition and drawing process. The thermodynamic properties of the doped glass powders discussed here could be crucial in assessing the thermal stability of the glass, required cooling rate, and its susceptibility to temperature changes during vitrification, devitrification, and fiber drawing steps.


  1. B.J. Ainslie et al., J. Mater. Sci. Lett. 6(11), 1361–1363 (1987)CrossRefGoogle Scholar
  2. A.J. Animesh, P. Capper, S. Kasap, A. Willoughby, Inorganic Glasses for Photonics Fundamentals: Engineering and Applications. Wiley Series in Materials for Electronic and Optoelectronic Applications (Wiley, 2016). ISBN 9780470741702.,+Engineering,+and+Applications-p-9780470741702
  3. K. Arai et al., J. Appl. Phys. 59(10), 3430–3436 (1986)CrossRefGoogle Scholar
  4. L. Armelao et al., Surf. Coat. Technol. 190, 218–222 (2005)CrossRefGoogle Scholar
  5. J. Ballato, P. Dragic, J. Am. Ceram. Soc. 96(9), 2675–2692 (2013)CrossRefGoogle Scholar
  6. J. Ballato, E. Snitzer, Appl. Opt. 34(30), 6848–6854 (1995)CrossRefGoogle Scholar
  7. C.J. Brinker, G.W. Scherer, Sol-Gel Science (Academic, Waltham, 1990)Google Scholar
  8. E. Desurvire et al., Opt. Lett. 12(11), 888 (1987)CrossRefGoogle Scholar
  9. L. Di Labio et al., Opt. Lett. 33(10), 1050–1052 (2008a)CrossRefGoogle Scholar
  10. L. Di Labio et al., Appl. Opt. 47(10), 1581–1584 (2008b)CrossRefGoogle Scholar
  11. D.J. DiGiovanni et al., J. Non-Cryst. Solids 113(1), 58–64 (1989)CrossRefGoogle Scholar
  12. M. Engholm, L. Norin, Opt. Expr. 16(2), 1260–1268 (2008)CrossRefGoogle Scholar
  13. D. Etissa, et al., Proc. SPIE Micro-Struct. Spec. Opt. Fibres 8426(84261I) (2012)Google Scholar
  14. I. Fanderlik, Optical Properties of Glass. 1983. As cited in Nagel (1987)Google Scholar
  15. X. Han et al., Thermodynamic Properties of Rare-earth Ions Doped Lithium-yttrium-Aluminium-silicate Glasses. Advanced Materials Research (Trans Tech Publications, 2013)Google Scholar
  16. J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press, 1999).
  17. J. Hegarty et al., Phys. Rev. Lett. 51(22), 2033 (1983)CrossRefGoogle Scholar
  18. K.C. Kao, G.A. Hockham, Proc. Inst. Electr. Eng. 113(7), 1151–1158 (1966)CrossRefGoogle Scholar
  19. F.P. Kapron et al., Appl. Phys. Lett. 17, 423–425 (1970)CrossRefGoogle Scholar
  20. F. Kirkbir et al., J. Sol-Gel Sci. Technol. 6, 203–217 (1996)CrossRefGoogle Scholar
  21. R.I. Laming et al., Proc. Opt. Amplif. Appl. Conf. 13, 16–19 (1990)Google Scholar
  22. Y. Li et al., J. Lightwave Technol. 26(18), 3256–3260 (2008)CrossRefGoogle Scholar
  23. H. Liu, Ytterbium-doped fiber amplifiers: Computer modeling of amplifier systems and a preliminary electron microscopy study of single ytterbium atoms in doped optical fibers, Master thesis, Department of Engineering Physics, McMaster University, 2011Google Scholar
  24. F. Lou et al., Opt. Mater. Expr. 4(6), 1267–1275 (2014)CrossRefGoogle Scholar
  25. J. Marchi et al., J. Non-Cryst. Solids 351, 863–868 (2005)CrossRefGoogle Scholar
  26. J.F. Massicott et al., Proc. SPIE Fiber Laser Sources Amplif. II(1373), 93–102 (1991)CrossRefGoogle Scholar
  27. V. Matejec et al., J. Sol-Gel Sci. Technol. 13, 617–621 (1998)CrossRefGoogle Scholar
  28. R.J. Mears et al., Electron. Lett. 26, 1026 (1987)CrossRefGoogle Scholar
  29. A. Méndez, T. Morse (eds.), Specialty Optical Fibers Handbook, 1st edn (Academic, London/Oxford/Boston/New York/San Diego, 2006). ISBN 9780123694065.
  30. J.F.M. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn. (Marcel Dekker, NewYork, 2001)CrossRefGoogle Scholar
  31. T. Miya et al., Electron. Lett. 15(4), 106–108 (1979)CrossRefGoogle Scholar
  32. S. Nagel, IEEE Commun. Mag. 25(4), 33–43 (1987)CrossRefGoogle Scholar
  33. S.R. Nagel et al., IEEE Trans. Microwave Theo. Tech. 30(4), 305–322 (1982)CrossRefGoogle Scholar
  34. H. Najafi, et al., Proc. SPIE Micro-Struct. Speci. Opt. Fibres IV9886(98860Z) (2016)Google Scholar
  35. H. Namikawa et al., J. Appl. Phys. 21, L360–L362 (1982)CrossRefGoogle Scholar
  36. M. Neff, Metal and transition metal doped fibers, Doctoral thesis, Institute of Applied Physics, University of Bern, Switzerland, 2010Google Scholar
  37. M. Neff et al., Opt. Mater. 31(2), 247–251 (2008)CrossRefGoogle Scholar
  38. M. Neff et al., Opt. Mater. 33(1), 1–3 (2010)CrossRefGoogle Scholar
  39. K. Oh, U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards, vol. 240 (Wiley, 2012). ISBN 9780471455585Google Scholar
  40. U.C. Paek, C.R. Kurkjian, J. Am. Ceram. Soc. 58(7–8), 330–335 (1975)CrossRefGoogle Scholar
  41. U. Pedrazza, Doped Sol-Gel Materials for the Production of optical Fibers, Doctoral thesis, Institute of Imaging and Applied Optics, Ecole polytechnique federal de Lausanne (EPFL), Switzerland, 2006Google Scholar
  42. U. Pedrazza et al., Opt. Mater. 29(7), 905–907 (2007)CrossRefGoogle Scholar
  43. B.A. Philippe, O.J. Simpson, Erbium-Doped Fiber Amplifiers – Fundamentals and Technology, 1st edn (Academic, London/Oxford/Boston/New York/San Diego, 1999). ISBN 9780080505848
  44. S. Pilz et al., ALT Proc. 2012 (2012)Google Scholar
  45. S. Pilz et al., Proc. SPIE Micro-Struct. Spec. Opt. Fibres IV 9886(988614) (2016)Google Scholar
  46. S. Pilz et al., MDPI J. Fibers 5(24) (2017)CrossRefGoogle Scholar
  47. S.B. Poole et al., Electron. Lett. 21(17), 737–738 (1985)CrossRefGoogle Scholar
  48. R.S. Quimby et al., J. Appl. Phys. 76(8), 4472–4478 (1994)CrossRefGoogle Scholar
  49. S.C. Rasmussen, How Glass Changed the World (Springer, Heidelberg/New York/Dordrecht/London, 2012)CrossRefGoogle Scholar
  50. R. Renner-Erny et al., Opt. Mater. 29(8), 919–922 (2007)CrossRefGoogle Scholar
  51. V. Romano et al., Int. J. Modern Phys. B 28, 1442010 (2014)CrossRefGoogle Scholar
  52. G.F. Sagredo To Galileo XII, 417–418 (1618)Google Scholar
  53. J. Scheuner et al., Proc. SPIE Micro-Struct. Spec. Opt. Fibres IV 9886(988613) (2016)Google Scholar
  54. J. Scheuner, et al., Advances in optical fibers fabricated with granulated silica. In Optical Fiber Communications Conference and Exhibition (OFC), 1-3 (IEEE 2017).
  55. H. Scholze, Glas: Natur, Struktur und Eigenschaften (Springer, Berlin/Heidelberg, 1988)CrossRefGoogle Scholar
  56. K. Schuster, et al., Proc. SPIE Opt. Components Mater. XII 9359(935914) (2012)Google Scholar
  57. K. Schuster et al., Adv. Opt. Technol. 3(4), 447–468 (2014)Google Scholar
  58. J.E. Shelby, Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, Cambridge, 1997)Google Scholar
  59. M. Shimizu et al., IEEE Photon. Technol. Lett. 2, 43–45 (1990)CrossRefGoogle Scholar
  60. E. Snitzer, J. Opt. Soc. Am. A 51(5), 491–498 (1961)CrossRefGoogle Scholar
  61. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B. C. McCollum, Double clad, offset core Nd fiber laser, in Optical Fiber Sensors. OSA Technical Digest Series, vol 2 (Optical Society of America, 1988), paper PD5Google Scholar
  62. K. Susa et al., J. Non-Cryst. Solids 119, 21–28 (1990)CrossRefGoogle Scholar
  63. S. Unger et al., Proc. SPIE Opt. Components Mater. VI 7212(72121B) (2009)Google Scholar
  64. S. Unger, et al., Laser Phys. 24(3) (2014)Google Scholar
  65. V. Velmiskin, et al., Proc. SPIE Micro-Struct. Spec. Opt. Fibres 8426(84260I) (2012)Google Scholar
  66. G.G. Vienne et al., Opt. Fiber Technol. 2(4), 387–393 (1996)CrossRefGoogle Scholar
  67. S. Wang et al., Opt. Mater. 35(9), 1752–1755 (2013)CrossRefGoogle Scholar
  68. S. Wang et al., J. Mater. Chem. C 2(22), 4406–4414 (2014)CrossRefGoogle Scholar
  69. S. Wang et al., Opt. Mater. Expr. 6(1), 69–68 (2016)CrossRefGoogle Scholar
  70. F. Wu et al., Mater. Res. Bull. 28(7), 637–644 (1993)CrossRefGoogle Scholar
  71. C. Xia et al., Opt. Mater. 34(5), 769–771 (2012)CrossRefGoogle Scholar
  72. W. Zhang et al., Opt. Quant. Electron. 49, 27 (2017)CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Institute for Applied Laser, Photonics and Surface Technologies (ALPS)Bern University of Applied SciencesBurgdorfSwitzerland
  2. 2.Institute of Applied Physics (IAP)University of BernBernSwitzerland

Section editors and affiliations

  • Kyunghwan Oh
    • 1
  1. 1.Department of Physics and Applied PhysicsYonsei UniversitySeoulSouth Korea

Personalised recommendations