Optical Fibers for High-Power Lasers

Living reference work entry


Lasers with high output powers are demanded for a wide variety of applications, ranging from material processing, remote sensing, medical surgery, to fundamental science. Across all these application scenarios, there are two main challenges: the scaling of output power and the quality of the laser beam. In the past decade, there have been tremendous research efforts to tackle these two issues in both continuous wave (CW) and pulsed lasers, to improve the power level, wavelength tunability, coherence, line width, etc. Among them, fiber technology has enabled the flexible delivery of high-power laser beams with precision beam quality (Jauregui et al., Nat Photonics 7:861–867, 2013). The technology development could be summarized in two approaches: passive fiber technology and active fiber technology. Passive fibers offer the last step manipulation of high-power laser beams from gas laser, semiconductor lasers, or other solid-state lasers. Active fibers are the gain component in the fiber oscillator or amplifier to generate the optical emission. Compared with traditionally step-index fibers, new fiber structure designs open new horizons in laser technology. In this book chapter, the main content has been arranged according to different fiber structure designs. Typical specialty fibers have been chosen, including double-cladding fibers, large mode area photonic crystal fibers, large pitch fibers, leakage channel fibers, chirally coupled core fibers, pixelated Bragg fibers, and hollow-core fibers. The design principle, manufacturability, and future outlook have been discussed in each subsections.


Hollow-core Fiber (HCFs) Photonic Crystal Fiber (PCF) Large Mode Area (LMA) Double-cladding Fibers (DCFs) Fiber Bragg 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. J. Bai, J. Zhang, J. Koponen, M. Kanskar, E. Towe, High pulse energy chirally-coupled-core Yb-doped fiber amplifier system, conference on lasers and electro-Optics 2017, OSA technical digest, paper JW2A.88, 2017Google Scholar
  2. A. Baz, G. Bouwmans, L. Bigot, Y. Quiquempois, Pixelated high-index ring Bragg fibers. Opt. Express 20, 18795–18802 (2012)CrossRefGoogle Scholar
  3. F. Couny, F. Benabid, P.J. Roberts, M.T. Burnett, S.A. Maier, Identification of Bloch-modes in hollow-core photonic crystal fiber cladding. Opt. Express 15, 325–338 (2007)CrossRefGoogle Scholar
  4. J.W. Dawson, M.J. Messerly, R.J. Beach, M.Y. Shverdin, E.A. Stappaerts, A.K. Sridharan, P.H. Pax, H.E. Heebner, C.W. Siders, C.P.J. Barty, Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express 16, 13240 (2008)CrossRefGoogle Scholar
  5. L. Dong, J. Li, X. Peng, Bend resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective area up to 3160μm2. Opt. Express 14, 11512–11519 (2006)CrossRefGoogle Scholar
  6. L. Dong, H.A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, M.E. Fermann, Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding. Opt. Express 17, 8962–8969 (2009)CrossRefGoogle Scholar
  7. M.A. Duguay, Y. Kukubun, T.L. Koch, L. Pfeiffer, Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures. Appl. Phys. Lett. 49, 13–15 (1986)CrossRefGoogle Scholar
  8. S. Février, B. Beaudou, P. Viale, Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Opt. Express 18, 5142–5150 (2010)CrossRefGoogle Scholar
  9. I. Hu, C. Zhu, M. Haines, T. McComb, G. Fanning, R. Farrow, A. Galvanauskas, Nonlinear polarization switching and preservation effects in 55 μm core polygonal-CCC fibers, conference on lasers and electro-Optics 2015, OSA technical digest, paper JTh2A.94, 2015Google Scholar
  10. M. Javadimanesh, S. Ghavami Sabouri, A. Khorsandi, The effect of cladding geometry on the absorption efficiency of double-clad fiber lasers. Opt. Appl. XLVI, 2 (2016)Google Scholar
  11. Y. Jeong, J.K. Sahu, D.N. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1:36 kW continuous-wave output power. Opt. Express 12, 6088–6092 (2004)CrossRefGoogle Scholar
  12. J.C. Knight, T.A. Birks, P. St, J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRefGoogle Scholar
  13. D. Kouznetsov, J.V. Moloney, Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry. J. Opt. Soc. Am. B 19, 1259–1263 (2002)CrossRefGoogle Scholar
  14. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)CrossRefGoogle Scholar
  15. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, High-power rod-type photonic crystal fiber laser. Opt. Express 13, 1055–1058 (2005)CrossRefGoogle Scholar
  16. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, Extended single-mode photonic crystal fiber lasers. Opt. Express 14, 2715–2720 (2006)CrossRefGoogle Scholar
  17. C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, K. Tankala, Effectively single-mode chirally-coupled core fiber, advanced solid-state photonics 2007, OSA technical digest, paper ME2, 2007Google Scholar
  18. R. Maurer, Optical waveguide light source, U.S. Patent 3,808,549, 1974Google Scholar
  19. A. Mizrahi, L. Schächter, Bragg reflection waveguides with a matching layer. Opt. Express 12, 3156–3170 (2004)CrossRefGoogle Scholar
  20. M. Nisoli, S.D. Silvestri, O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996)CrossRefGoogle Scholar
  21. D.G. Ouzounov, C.J. Hensley, A.L. Gaeta, N. Venkateraman, M.T. Gallagher, K.W. Koch, Soliton pulse compression in photonic band-gap fibers. Opt. Express 13, 6153–6159 (2005)CrossRefGoogle Scholar
  22. G. Overton, IPG photonics offers world’s first 10 kW single-mode production laser, Laser Focus World, 2015.Google Scholar
  23. H. Pei, J. Ruppe, S. Chen, M. Sheikhsofla, J. Nees, Y. Yang, R. Wilcox, W. Leemans, A. Galvanauskas, 10mJ energy extraction from Yb-doped 85μm core CCC fiber using coherent pulse stacking amplification of fs pulses, Laser Congress 2017 (ASSL, LAC), OSA technical digest, paper AW4A.4, 2017Google Scholar
  24. X. Peng, L. Dong, Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2. Opt. Lett. 32, 358–360 (2007)CrossRefGoogle Scholar
  25. M.A. Popenda, H.I. Stawska, L.M. Mazur, K. Jakubowski, A. Kosolapov, A. Kolyadin, E. Bereś-Pawlik, Application of negative curvature hollow-core fiber in an optical fiber sensor setup for multiphoton spectroscopy. Sensors 17, 2278 (2017)CrossRefGoogle Scholar
  26. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005)CrossRefGoogle Scholar
  27. P.S.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J.C. Travers, Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photonics 8, 278–286 (2014)CrossRefGoogle Scholar
  28. J.D. Shephard, A. Urich, R.M. Carter, P. Jaworski, R.R. Maier, W. Belardi, F. Yu, W.J. Wadsworth, J.C. Knight, D.P. Hand, Silica hollow core microstructured fibers for beam delivery in industrial and medical applications. Front. Phys. 3(24) (2015)Google Scholar
  29. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum, Double clad, offset core Nd fibre laser, paper PD5, in Proc. Opt. Fib. Sensors 2, OSA, 1988Google Scholar
  30. F. Stutzki, J. Florian, A. Liem, C. Jauregui, J. Limpert, A. Tünnermann, 26mJ, 130W Q-switched fiber-laser system with near-diffraction-limited beam quality. Opt. Lett. 37, 1073–1075 (2012)CrossRefGoogle Scholar
  31. F. Stutzki, F. Jansen, H.J. Otto, C. Jauregui, J. Limpert, A. Tünnermann, Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems. Optica 1, 233–242 (2014)CrossRefGoogle Scholar
  32. Z. Várallyay, K. Saitoh, Photonic crystal fibre for dispersion control, in Frontiers in guided wave optics and optoelectronics (InTech), 2010Google Scholar
  33. Y.Y. Wang, N.V. Wheeler, F. Couny, P.J. Roberts, F. Benabid, Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36, 669–671 (2011)CrossRefGoogle Scholar
  34. C. Wei, R. Joseph Weiblen, C.R. Menyuk, J. Hu, Negative curvature fibers. Adv. Opt. Photon. 9, 504–561 (2017)CrossRefGoogle Scholar
  35. W.S. Wong, X. Peng, J.M. McLaughlin, L. Dong, Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers. Opt. Lett. 30, 2855–2857 (2005)CrossRefGoogle Scholar
  36. J.P. Yehouessi, A. Baz, L. Bigot, G. Bouwmans, O. Vanvincq, M. Douay, Y. Quiquempois, Design and realization of flexible very large mode area pixelated Bragg fibers. Opt. Lett. 40, 363–366 (2015)CrossRefGoogle Scholar
  37. J.P. Yehouessi, G. Bouwmans, O. Vanvincq, A. Cassez, R. Habert, Y. Quiquempois, L. Bigot, Ultra large mode area pixelated Bragg fiber, in Fiber Lasers XIII: Technology, Systems, and Applications, Proc. SPIE 9728 (2016)Google Scholar

Authors and Affiliations

  1. 1.Precision Measurements GroupSingapore Institute of Manufacturing TechnologySingaporeSingapore

Section editors and affiliations

  • Perry Shum
    • 1
  • Zhilin Xu
  1. 1.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations