Overview of Recent Applications of Cognitive Radio in Wireless Communication Systems

  • Miguel López-BenítezEmail author
Living reference work entry


Cognitive radio (CR) is one of the most intensively researched paradigms in recent wireless communication systems. The great deal of attention that CR has attracted can be ascribed to its demonstrated capability to increase spectrum efficiency and overall network capacity through interference-free spectrum sharing among several wireless communication systems. CR provides intelligence to wireless networks, enabling users to access multiple air interfaces and select the most appropriate alternative under varying communication needs and operation conditions. The potential benefits of CR have not gone unnoticed to many wireless communication systems, which nowadays have effectively benefited from the adoption of CR techniques and operating principles. This chapter provides an overview on the introduction of CR principles into two prominent wireless communication systems, namely, mobile and satellite communication networks. A detailed discussion is provided on the background and motivation for the adoption of the CR technology and how CR techniques have been introduced in these two systems. A brief discussion is also provided on the adoption of the CR technology in other wireless communication systems, including military communications, public safety and emergency networks, aeronautical communications, and wireless-based Internet of Things. This chapter is aimed at illustrating the practical implementation of the theoretical CR principles widely discussed in the literature.


Cognitive radio Dynamic spectrum access Mobile communications Satellite communications 


  1. 1.
    Akyildiz IF, Lee WY, Chowdhury KR (2009) CRAHNs: cognitive radio ad hoc networks. Ad Hoc Netw 7(5):810–836CrossRefGoogle Scholar
  2. 2.
    Ariananda DD, Leus G (2012) Compressive wideband power spectrum estimation. IEEE Trans Signal Process 60(9):4775–4789MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buddhikot MM (2007) Understanding dynamic spectrum access: taxonomy, models and challenges. In: Proceedings of the 2nd IEEE international symposium new frontiers in dynamic spectrum access networks (DySPAN 2007), pp 649–663Google Scholar
  4. 4.
    Chatzinotas S, Ottersten B, de Gaudenzi R (eds) (2015) Cooperative and cognitive satellite systems. Academic, AmsterdamGoogle Scholar
  5. 5.
    Chatzinotas S, Evans B, Guidotti A, Icolari V, Lagunas E, Maleki S, Sharma SK, Tarchi D, Thompson P, Vanelli-Coralli A (2017) Cognitive approaches to enhance spectrum availability for satellite systems. Int J Satell Commun Netw 35(5):407–442CrossRefGoogle Scholar
  6. 6.
    Cheng N, Zhang N, Lu N, Shen X, Mark JW, Liu F (2014) Opportunistic spectrum access for CR-VANETs: a game-theoretic approach. IEEE Trans Vehic Tech 63(1):237–251CrossRefGoogle Scholar
  7. 7.
    Ding Z, Liu Y, Choi J, Sun Q, Elkashlan M, Chih-Lin I, Poor HV (2017) Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun Mag 55(2):185–191CrossRefGoogle Scholar
  8. 8.
    Dohler M, Heath RW, Lozano A, Papadias CB, Valenzuela RA (2011) Is the PHY layer dead? IEEE Commun Mag 49(4):159–165CrossRefGoogle Scholar
  9. 9.
    Farhang-Boroujney B (2011) OFDM versus filter bank multicarrier. IEEE Signal Process Mag 28(3):92–112CrossRefGoogle Scholar
  10. 10.
    3rd Generation Partnership Project Technical Specification Group Radio Access Network (2009) Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN), Release 9. 3GPP TR 25.913, v9.0.0Google Scholar
  11. 11.
    3rd Generation Partnership Project Technical Specification Group Radio Access Network (2015) Study on licensed-assisted access to unlicensed spectrum, Release 13. 3GPP TR 36.889, v13.0.0Google Scholar
  12. 12.
    3rd Generation Partnership Project Technical Specification Group Radio Access Network (2017) Physical channels and modulation, Release 15. 3GPP TS 36.211, v15.0.0Google Scholar
  13. 13.
    3rd Generation Partnership Project Technical Specification Group Services and System Aspects (2018) Service requirements for the 5G system, Stage 1, Release 15. 3GPP TR 22.261, v15.3.0Google Scholar
  14. 14.
    Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Inf Theory 46(2):388–404MathSciNetCrossRefGoogle Scholar
  15. 15.
    Halonen T, Romero J, Melero J (2003) GSM, GPRS and EDGE performance: evolution towards 3G/UMTS. Wiley, ChichesterCrossRefGoogle Scholar
  16. 16.
    Holma H, Toskala A (2010) WCDMA for UMTS – HSPA evolution and LTE. Wiley, ChichesterCrossRefGoogle Scholar
  17. 17.
    Holma H, Toskala A (2011) LTE for UMTS – evolution to LTE-advanced. Wiley, ChichesterCrossRefGoogle Scholar
  18. 18.
    Höyhtyä M (2013) Secondary terrestrial use of broadcasting satellite services below 3 GHz. Int J Wirel Mob Netw 5(1):1–14CrossRefGoogle Scholar
  19. 19.
    Höyhtyä M, Kyröläinen J, Hulkkonen A, Ylitalo J, Roivainen A (2012) Application of cognitive radio techniques to satellite communication. In: Proceedings IEEE international symposium dynamic spectrum access networks (DySPAN 2012), pp 540–551Google Scholar
  20. 20.
    Hu F, Chen B, Zhu K (2018, in press) Full spectrum sharing in cognitive radio networks toward 5G: a survey. IEEE Access 6:15754–15776CrossRefGoogle Scholar
  21. 21.
    Jacob P, Sirigina RP, Madhukumar AS, Prasad VA (2016) Cognitive radio for aeronautical communications: a survey. IEEE Access 4:3417–3443CrossRefGoogle Scholar
  22. 22.
    Ji H, Kim Y, Lee J, Onggosanusi E, Nam Y, Zhang J, Lee B, Shim B (2017) Overview of full-dimension MIMO in LTE-Advanced Pro. IEEE Commun Mag 55(2):176–184CrossRefGoogle Scholar
  23. 23.
    Kandeepan S, Nardis LD, Benedetto MGD, Guidotti A, Corazza GE (2010) Cognitive satellite terrestrial radios. In: Proceedings of the IEEE global communications conference (Globecom 2010), pp 1–6Google Scholar
  24. 24.
    Khan AA, Rehmani MH, Rachedi A (2017) Cognitive-radio-based internet of things: applications, architectures, spectrum related functionalities, and future research directions. IEEE Wirel Commun 24(3):17–25CrossRefGoogle Scholar
  25. 25.
    Kosta C, Hunt B, Quddus AU, Tafazolli R (2013) On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems. IEEE Commun Surv Tutorials 15(3):973–995CrossRefGoogle Scholar
  26. 26.
    Kwon HJ, Jeon J, Bhorkar A, Ye Q, Harada H, Jiang Y, Liu L, Nagata S, Ng BL, Novlan T, Oh J, Yi W (2017) Licensed-assisted access to unlicensed spectrum in LTE release 13. IEEE Commun Mag 55(2):201–207CrossRefGoogle Scholar
  27. 27.
    Labib M, Marojevic V, Reed JH, Zaghloul AI (2017) Extending LTE into the unlicensed spectrum: technical analysis of the proposed variants. IEEE Commun Stand Mag 1(4):31–39CrossRefGoogle Scholar
  28. 28.
    Lagunas E, Sharma S, Maleki S, Chatzinotas S, Grotz J, Krause J, Ottersten B (2015) Resource allocation for cognitive satellite uplink and fixed-service terrestrial coexistence in Ka-band. In: Proceedings of the international ICST conference cognitive radio oriented wireless networks and communications (CROWNCOM 2015), pp 487–498Google Scholar
  29. 29.
    Lavender T, Hogg T (2015) Licensed shared access. UK Spectrum Policy ForumGoogle Scholar
  30. 30.
    Lee WCY (1989) Mobile cellular telecommunications systems. McGraw-Hill, New YorkGoogle Scholar
  31. 31.
    Li F, Li G, Li Z, Wang Y, Lu C (2017) Wideband spectrum compressive sensing for frequency availability in LEO-based mobile satellite systems. Int J Satell Commun Netw 35(5):481–502CrossRefGoogle Scholar
  32. 32.
    Li R, Chen Y, Li GY, Liu G (2017) Full-duplex cellular networks. IEEE Commun Mag 55(4):184–191CrossRefGoogle Scholar
  33. 33.
    Li Y, Pateromichelakis E, Vucic N, Luo J, Xu W, Caire G (2017) Radio resource management considerations for 5G millimeter wave backhaul and access networks. IEEE Commun Mag 55(6):86–92CrossRefGoogle Scholar
  34. 34.
    López-Benítez M (2013) Cognitive radio. In: Chu X, López-Pérez D, Yang Y, Gunnarsson F (eds) Heterogeneous cellular networks: theory, simulation and deployment, chap 13. Cambridge University Press, Cambridge, pp 383–425CrossRefGoogle Scholar
  35. 35.
    Lopez-Perez D, Valcarce A, Roche GDL, Zhang J (2009) OFDMA femtocells: a roadmap on interference avoidance. IEEE Commun Mag 47(9):41–48CrossRefGoogle Scholar
  36. 36.
    Maglogiannis V, Naudts D, Shahid A, Giannoulis S, Laermans E, Moerman I (2017) Cooperation techniques between LTE in unlicensed spectrum and Wi-Fi towards fair spectral efficiency. Sensors 17(9):1–26CrossRefGoogle Scholar
  37. 37.
    Mangalvedhe N, Ratasuk R, Ghosh A (2016) NB-IoT deployment study for low power wide area cellular IoT. In: Proceedings of the IEEE 27th international symposium personal, indoor and mobile radio communications (PIMRC 2016), pp 1–6Google Scholar
  38. 38.
    Medjahdi Y, le Ruyet D, Bader F, Martinod L (2014) Integrating LTE broadband system in PMR band: OFDM vs. FBMC coexistence capabilities and performances. In: Proceedings of the 11th international symposium wireless communications systems (ISWCS 2014)Google Scholar
  39. 39.
    Mitola J (2006) Cognitive radio architecture. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  40. 40.
    Mueck MD, Srikanteswara S, Badic B (2015) Spectrum sharing: licensed shared access (LSA) and spectrum access systems (SAS). Intel White PaperGoogle Scholar
  41. 41.
    Noh G, Wang H, Shin C, Kim S, Jeon Y, Shin H, Kim J, Kim I (2017) Enabling technologies toward fully LTE-compatible full-duplex radio. IEEE Commun Mag 55(3):188–195CrossRefGoogle Scholar
  42. 42.
    Sakr AH, Tabassum H, Hossain E, Kim DI (2015) Cognitive spectrum access in device-to-device-enabled cellular networks. IEEE Commun Mag 53(7):126–133CrossRefGoogle Scholar
  43. 43.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423MathSciNetCrossRefGoogle Scholar
  44. 44.
    Sharma SK, Chatzinotas S, Ottersten B (2012) Exploiting polarization for spectrum sensing in cognitive SatComs. In: Proceedings international ICST conference cognitive radio oriented wireless networks and communications (CROWNCOM 2012), pp 36–41Google Scholar
  45. 45.
    Sharma SK, Chatzinotas S, Ottersten B (2012) Satellite cognitive communications: interference modeling and techniques selection. In: Proceedings 6th advanced satellite multimedia systems conference and 12th signal processing for space communications workshop (ASMS/SPSC 2012), pp 111–118Google Scholar
  46. 46.
    Sharma SK, Chatzinotas S, Ottersten B (2012) Spectrum sensing in dual polarized fading channels for cognitive SatComs. In: Proceedings of the IEEE global communications conference (Globecom 2012), pp 3419–3424Google Scholar
  47. 47.
    Sharma SK, Chatzinotas S, Ottersten B (2013) Transmit beamforming for spectral coexistence of satellite and terrestrial networks. In: Proceedings international ICST conference cognitive radio oriented wireless networks and communications (CROWNCOM 2013), pp 275–281Google Scholar
  48. 48.
    Sharma SK, Maleki S, Chatzinotas S, Grotz J, Krause J, Ottersten B (2015) Joint carrier allocation and beamforming for cognitive SatComs in Ka-band (17.3-18.1 GHz). In: Proceedings international conference communications (ICC 2015), pp 2476–2481Google Scholar
  49. 49.
    Thalanany S, Irizarry M, Saxena N (2017) License-assisted access considerations. IEEE Commun Standards Mag 1(2):106–112CrossRefGoogle Scholar
  50. 50.
    Tian Z, Tafesse Y, Sadler BM (2012) Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing. IEEE J Sel Top Sign Process 6(1):58–69CrossRefGoogle Scholar
  51. 51.
    Uchida N, Sato G, Takahata K, Shibata Y (2011) Optimal route selection method with satellite system for cognitive wireless network in disaster information network. In: Proceedings 25th IEEE international conference on advanced information networking and applications (AINA 2011), pp 23–29Google Scholar
  52. 52.
    Vassaki S, Poulakis MI, Panagopoulos AD, Constantinou P (2017) Power allocation in cognitive satellite terrestrial networks with QoS constraints. IEEE Commun Lett 17(7): 1344–1347CrossRefGoogle Scholar
  53. 53.
    Wang Y, Wu Z (2016) A coexistence analysis method to apply ACLR and ACS between NB-IoT and LTE for stand-alone case. In: Proceedings of the 6th international conference on instrumentation and measurement, computer, communication and control (IMCCC 2016) pp 375-379Google Scholar
  54. 54.
    Wang W, Yu G, Huang A (2013) Cognitive radio enhanced interference coordination for femtocell networks. IEEE Commun Mag 51(6):37–43CrossRefGoogle Scholar
  55. 55.
    Wang J, Song MS, Santhiveeran S, Lim K, Ko G, Kim K, Hwang SH, Ghosh M, Gaddam V, Challapali K (2010) First cognitive radio networking standard for personal/portable devices in TV white spaces. In: Proceedings of the IEEE international symposium dynamic spectrum access networks (DySPAN 2010), pp 1–12Google Scholar
  56. 56.
    Yen CP, Tsai Y, Wang X (2013) Wideband spectrum sensing based on sub-Nyquist sampling. IEEE Trans Signal Process 61(12):3028–3040CrossRefGoogle Scholar
  57. 57.
    Yuan G, Zhang X, Wang W, Yang Y (2010) Carrier aggregation for LTE-advanced mobile communication systems. IEEE Commun Mag 48(2):88–93CrossRefGoogle Scholar
  58. 58.
    Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutorials 11(1):116–130CrossRefGoogle Scholar
  59. 59.
    Zhang J, Wang M, Hua M, Xia T, Yang W, You X (2018) LTE on license-exempt spectrum. IEEE Commun Surv Tutorials 20(1):647–673CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK

Section editors and affiliations

  • Yue Gao
    • 1
  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK

Personalised recommendations