Encyclopedia of Nanotechnology

2016 Edition
| Editors: Bharat Bhushan

Exposure and Toxicity of Metal and Oxide Nanoparticles to Earthworms

  • Claire CoutrisEmail author
  • Erik J. Joner
Reference work entry
DOI: https://doi.org/10.1007/978-94-017-9780-1_183

Synonyms

Definition

Exposure and toxicity are the two variables that are required to assess the risk that a substance poses to an organism or the environment. Exposure determines to which extent an organism enters in contact with a substance, while toxicity measures to which extent an organism is impaired by the substance.

Background

The increasing use of engineered nanomaterials (ENMs) in consumer products is leading to a new type of environmental pollution for which the knowledge related to environmental hazards and risks is very limited. Toxicity and even ecotoxicity have been examined for a range of ENMs, and a majority of the reports conclude that several ENMs have toxic properties under certain conditions. Yet, exposure conditions seem to govern the outcome of such studies which...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B.: Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222 (2009)CrossRefGoogle Scholar
  2. 2.
    Kiser, M.A., Westerhoff, P., Benn, T., Wang, Y., Perez-Rivera, J., Hristovski, K.: Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757–6763 (2009)CrossRefGoogle Scholar
  3. 3.
    Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G.V., Jolivet, J.-P., Wiesner, M.R.: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009)CrossRefGoogle Scholar
  4. 4.
    Edwards, C.A., Bohlen, P.J.: Biology and Ecology of Earthworms. Chapman and Hall, London (1996)Google Scholar
  5. 5.
    Coutris, C., Hertel-Aas, T., Lapied, E., Joner, E.J., Oughton, D.H.: Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology (2012). doi:10.3109/17435390.2011.569094 (online Apr 2011)Google Scholar
  6. 6.
    Shoults-Wilson, W.A., Reinsch, B.C., Tsyusko, O.V., Bertsch, P.M., Lowry, G.V., Unrine, J.M.: Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 75, 365–377 (2011)CrossRefGoogle Scholar
  7. 7.
    Heckmann, L.H., Hovgaard, M.B., Sutherland, D.S., Autrup, H., Besenbacher, F., Scott-Fordsmand, J.J.: Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20, 226–233 (2011)CrossRefGoogle Scholar
  8. 8.
    Shoults-Wilson, W.A., Zhurbich, O.I., McNear, D.H., Tsyusko, O.V., Bertsch, P.M., Unrine, J.M.: Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20, 385–396 (2011)CrossRefGoogle Scholar
  9. 9.
    Lapied, E., Moudilou, E., Exbrayat, J.M., Oughton, D.H., Joner, E.J.: Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta). Nanomedicine 5, 975–984 (2010)CrossRefGoogle Scholar
  10. 10.
    Shoults-Wilson, W.A., Reinsch, B.C., Tsyusko, O.V., Bertsch, P.M., Lowry, G.V., Unrine, J.M.: Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology (2011). doi:10.3109/17435390.2010.537382 (online Dec 2010)Google Scholar
  11. 11.
    Unrine, J., Bertsch, P., Hunyadi, S.E.: Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments. In: Grassian, V.H. (ed.) Nanoscience and Nanotechnology, pp. 343–364. Wiley, Hoboken (2008)Google Scholar
  12. 12.
    Unrine, J.M., Hunyadi, S.E., Tsyusko, O.V., Rao, W., Shoults-Wilson, W.A., Bertsch, P.M.: Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ. Sci. Technol. 44, 8308–8313 (2010)CrossRefGoogle Scholar
  13. 13.
    Oughton, D.H., Hertel-Aas, T., Pellicer, E., Mendoza, E., Joner, E.J.: Neutron activation of engineered nanoparticles as a tool in studies on their environmental fate and uptake in organisms. Environ. Toxicol. Chem. 27, 1883–1887 (2008)CrossRefGoogle Scholar
  14. 14.
    Gomes, S.I.L., Novais, S.C., Gravato, C., et al.: Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomarkers response in Enchytraeus albidus (Oligochaeta). Nanotoxicology (2012). doi:10.3109/17435390.2011.562327 (online Apr 2011)Google Scholar
  15. 15.
    Unrine, J.M., Tsyusko, O.V., Hunyadi, S.E., Judy, J.D., Bertsch, P.M.: Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J. Environ. Qual. 39, 1942–1953 (2010)CrossRefGoogle Scholar
  16. 16.
    Coleman, J.G., Johnson, D.R., Stanley, J.K., et al.: Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida. Environ. Toxicol. Chem. 29, 1575–1580 (2010)CrossRefGoogle Scholar
  17. 17.
    Hu, C.W., Li, M., Cui, Y.B., Li, D.S., Chen, J., Yang, L.Y.: Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol. Biochem. 42, 586–591 (2010)CrossRefGoogle Scholar
  18. 18.
    Lapied, E., Nahmani, J.Y., Moudilou, E., et al.: Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environ. Int. 37, 1105–1110 (2011)CrossRefGoogle Scholar
  19. 19.
    Hooper, H.L., Jurkschat, K., Morgan, A.J., et al.: Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ. Int. 37, 1111–1117 (2011)CrossRefGoogle Scholar
  20. 20.
    Li, L.-Z., Zhou, D.-M., Peijnenburg, W.J.G.M., et al.: Toxicity of zinc oxide nanoparticles in the earthworm Eisenia fetida and subcellular fractionation of Zn. Environ. Int. 37, 1098–1104 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesNorwegian University of Life SciencesÅsNorway
  2. 2.Bioforsk Soil and EnvironmentÅsNorway