Advertisement

SysteMoC: A Data-Flow Programming Language for Codesign

  • Joachim Falk
  • Christian Haubelt
  • Jürgen Teich
  • Christian Zebelein
Reference work entry

Abstract

Computations in hardware/software systems are inherently performed concurrently. Hence, modeling hardware/software systems requires notions of concurrency. Data-flow models have been and are still successfully applied in the modeling of hardware/software systems. In this chapter, we motivate and introduce the usage of data-flow models. Moreover, we discuss the expressiveness and analyzability of different data-flow Models of Computation (MoCs). Subsequently, we present SysteMoC, an approach supporting many data-flow MoCs based on the system description language SystemC. Besides specifying data-flow models, SystemMoC also permits the automatic classification of each different part of an application modeled in SysteMoC into a least expressive but most analyzable MoC. This classification is the key to further optimization in later design stages of hardware/software systems such as exploration of design alternatives as well as automatic code generation and hardware synthesis. Such optimization and refinement steps are employed as part of the SystemCoDesigner design flow that uses SysteMoC as its input language.

Acronyms

BDF

Boolean Data Flow

CIC

Common Intermediate Code

CPU

Central Processing Unit

CSDF

Cyclo-Static Data Flow

DDF

Dennis Data Flow

DFG

Data-Flow Graph

DSE

Design Space Exploration

FIFO

First-In First-Out

FSM

Finite-State Machine

FunState

Functions Driven by State Machines

HSCD

Hardware/Software Codesign

HSDF

Homogeneous (Synchronous) Data Flow

KPN

Kahn Process Network

MoC

Model of Computation

NDF

Non-Determinate Data Flow

SDF

Synchronous Data Flow

SysteMoC

SystemC Models of Computation

References

  1. 1.
    Bhattacharya B, Bhattacharyya SS (2001) Parameterized dataflow modeling for DSP systems. IEEE Trans Signal Process 49(10):2408–2421. doi: 10.1109/78.950795 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bhattacharyya SS, Murthy PK, Lee EA (1997) APGAN and RPMC: complementary heuristics for translating DSP block diagrams into efficient software implementations. J Des Autom Embed Syst 2:33CrossRefGoogle Scholar
  3. 3.
    Bilsen G, Engels M, Lauwereins R, Peperstraete J (1996) Cyclo-static dataflow. IEEE Trans Signal Process 44(2):397–408CrossRefGoogle Scholar
  4. 4.
    Blickle T, Teich J, Thiele L (1998) System-level synthesis using evolutionary algorithms. Des Autom Embed Syst 3(1):23–58CrossRefGoogle Scholar
  5. 5.
    Buck JT (1993) Scheduling dynamic dataflow graphs with bounded memory using the token flow model. Ph.D dissertation, Department of EECS, University of California, Berkeley. Technical Report UCB/ERL 93/69Google Scholar
  6. 6.
    Commoner F, Holt AW, Even S, Pnueli A (1971) Marked directed graphs. J Comput Syst Sci 5(5):511–523. doi: 10.1016/S0022-0000(71)80013-2 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dennis J (1974) First version of a data flow procedure language. In: Robinet B (ed) Programming symposium. Lecture notes in computer science, vol 19. Springer, Berlin/Heidelberg, pp 362–376. doi: 10.1007/3-540-06859-7_145 CrossRefGoogle Scholar
  8. 8.
    Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003) Taming heterogeneity – the ptolemy approach. Proc IEEE 91(1):127–144. doi: 10.1109/JPROC.2002.805829 CrossRefGoogle Scholar
  9. 9.
    Falk J (2015) A clustering-based MPSoC design flow for data flow-oriented applications. Dr. Hut, Sternstr. 18, München. Dissertation Friedrich-Alexander-Universität Erlangen-NürnbergGoogle Scholar
  10. 10.
    Falk J, Haubelt C, Teich J (2005) Syntax and execution behavior of SysteMoC. Technical report. 04-2005, University of Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-Design, Am Weichselgarten 3, D-91058 ErlangenGoogle Scholar
  11. 11.
    Falk J, Haubelt C, Teich J (2006) Efficient representation and simulation of model-based designs in systemC. In: Proceedings of the forum on specification and design languages (FDL 2006), pp 129–134Google Scholar
  12. 12.
    Falk J, Haubelt C, Zebelein C, Teich J (2013) Integrated modeling using finite state machines and dataflow graphs. In: Bhattacharyya SS, Deprettere EF, Leupers R, Takala J (eds) Handbook of signal processing systems. Springer, Berlin/Heidelberg, pp 975–1013CrossRefGoogle Scholar
  13. 13.
    Falk J, Keinert J, Haubelt C, Teich J, Bhattacharyya SS (2008) A generalized static data flow clustering algorithm for MPSoC scheduling of multimedia applications. In: Proceedings of the 8th ACM international conference on embedded software (EMSOFT 2008). ACM, New York, pp 189–198. doi: 10.1145/1450058.1450084 Google Scholar
  14. 14.
    Falk J, Schwarzer T, Glaß M, Teich J, Zebelein C, Haubelt C (2015) Quasi-static scheduling of data flow graphs in the presence of limited channel capacities. In: Proceedings of the 13th IEEE symposium on embedded systems for real-time multimedia (ESTIMEDIA 2015) p 10Google Scholar
  15. 15.
    Falk J, Schwarzer T, Zhang L, Glaß M, Teich J (2015) Automatic communication-driven virtual prototyping and design for networked embedded systems. Microprocess Microsyst 39(8):1012–1028. doi: 10.1016/j.micpro.2015.08.008 CrossRefGoogle Scholar
  16. 16.
    Falk J, Zebelein C, Haubelt C, Teich J (2011) A rule-based static dataflow clustering algorithm for efficient embedded software synthesis. In: Proceedings of the design, automation and test in Europe (DATE 2011). IEEE, pp 521–526Google Scholar
  17. 17.
    Falk J, Zebelein C, Haubelt C, Teich J (2013) A rule-based quasi-static scheduling approach for static Islands in dynamic dataflow graphs. ACM Trans Embed Comput Syst 12(3):74:1–74:31. doi: 10.1145/2442116.2442124
  18. 18.
    Falk J, Zebelein C, Keinert J, Haubelt C, Teich J, Bhattacharyya, SS (2011) Analysis of systemC actor networks for efficient synthesis. ACM Trans embed Comput Syst 10(2):18:1–18:34. doi: 10.1145/1880050.1880054
  19. 19.
    Girault A, Lee B, Lee E (1999) Hierarchical finite state machines with multiple concurrency models. IEEE Trans Comput Aided Des Integr Circuits Syst 18(6):742–760CrossRefGoogle Scholar
  20. 20.
    Gouda MG (1980) Liveness of marked graphs and communication and VLSI systems represented by them. Technical report, AustinGoogle Scholar
  21. 21.
    Gu R, Janneck JW, Raulet M, Bhattacharyya SS (2011) Exploiting statically schedulable regions in dataflow programs. Signal Processing Syst 63(1):129–142. doi: 10.1007/s11265-009-0445-1 CrossRefGoogle Scholar
  22. 22.
    Hsu CJ, Bhattacharyya SS (2007) Cycle-breaking techniques for scheduling synchronous dataflow graphs. Technical report. UMIACS-TR-2007-12, Institute for Advanced Computer Studies, University of Maryland at College ParkGoogle Scholar
  23. 23.
    Hylands C, Lee E, Liu J, Liu X, Neuendorffer S, Xiong Y, Zhao Y, Zheng H (2004) Overview of the ptolemy project, technical memorandum no. UCB/ERL M03/25. Technical report, Department of Electrical Engineering and Computer Sciences, University of California, BerkeleyGoogle Scholar
  24. 24.
    Kahn G (1974) The semantics of a simple language for parallel programming. In: IFIP Congress, pp 471–475zbMATHGoogle Scholar
  25. 25.
    Keinert J, Streubühr M, Schlichter T, Falk J, Gladigau J, Haubelt C, Teich J, Meredith M (2009) SystemCoDesigner – an automatic ESL synthesis approach by design space exploration and behavioral synthesis for streaming applications. Trans Des Autom Electron Syst 14(1):1:1–1:23Google Scholar
  26. 26.
    Kosinski PR (1978) A straightforward denotational semantics for non-determinate data flow programs. In: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on principles of programming languages (POPL 1978). ACM, New York, pp 214–221. doi: 10.1145/512760.512783 Google Scholar
  27. 27.
    Lee EA (2006) The problem with threads. Technical report. UCB/EECS-2006-1, EECS Department, University of California, Berkeley. The published version of this paper is in IEEE Computer 39(5):33–42, May 2006Google Scholar
  28. 28.
    Lee EA, Messerschmitt DG (1987) Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans Comput 36(1):24–35. doi: 10.1109/TC.1987.5009446 CrossRefGoogle Scholar
  29. 29.
    Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245CrossRefGoogle Scholar
  30. 30.
    Lee EA, Sangiovanni-Vincentelli AL (1998) A framework for comparing models of computation. IEEE Trans Comput Aided Des Integr Circuits Syst 17(12):1217–1229. doi: 10.1109/43.736561 CrossRefGoogle Scholar
  31. 31.
    Parks TM (1995) Bounded scheduling of process networks. Ph.D dissertation, Department of EECS, University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html. Technical Report UCB/ERL M95/105
  32. 32.
    Pino JL, Bhattacharyya SS, Lee E (1995) A hierarchical multiprocessor scheduling system for DSP applications. In: Proceedings of the Asilomar conference on signals, systems, and computers, vol 1, pp 122–126. doi: 10.1109/ACSSC.1995.540525
  33. 33.
    Plishker W, Sane N, Kiemb M, Anand K, Bhattacharyya SS (2008) Functional DIF for rapid prototyping. In: The 19th IEEE/IFIP international symposium on rapid system prototyping (RSP 2008), pp 17–23. doi: 10.1109/RSP.2008.32
  34. 34.
    Plishker W, Sane N, Kiemb M, Bhattacharyya SS (2008) Heterogeneous design in functional DIF. In: Proceedings of the 8th international workshop on embedded computer systems: architectures, modeling, and simulation (SAMOS 2008). Springer, Berlin/Heidelberg, pp 157–166. doi: 10.1007/978-3-540-70550-5_18 CrossRefGoogle Scholar
  35. 35.
    Ptolemaeus C (ed) (2014) System design, modeling, and simulation using Ptolemy II. Ptolemy.org, Berkeley. http://ptolemy.org/systems
  36. 36.
    Rosales R, Glaß M, Teich J, Wang B, Xu Y, Hasholzner R (2014) Maestro – holistic actor-oriented modeling of nonfunctional properties and firmware behavior for mpsocs. ACM Trans Des Autom Electron Syst (TODAES) 19(3):23:1–23:26. doi: 10.1145/2594481
  37. 37.
    Schwarzer T, Falk J, Glaß M, Teich J, Zebelein C, Haubelt C (2015) Throughput-optimizing compilation of dataflow applications for multi-cores using quasi-static scheduling. In: Stuijk S (ed) Proceedings of the 18th international workshop on software and compilers for embedded systems (SCOPES 2015). ACM, Berlin, pp 68–75CrossRefGoogle Scholar
  38. 38.
    Streubühr M, Falk J, Haubelt C, Teich J, Dorsch R, Schlipf T (2006) Task-accurate performance modeling in systemC for real-time multi-processor architectures. In: Gielen GGE (ed) Proceedings of design, automation and test in Europe (DATE 2006). European Design and Automation Association, Leuven, pp 480–481. doi: 10.1145/1131610 Google Scholar
  39. 39.
    Streubühr M, Gladigau J, Haubelt C, Teich J (2010) Efficient approximately-timed performance modeling for architectural exploration of MPSoCs. In: Borrione D (ed) Advances in design methods from modeling languages for embedded systems and SoC’s. Lecture notes in electrical engineering, vol 63. Springer, Berlin/Heidelberg, pp 59–72. doi: 10.1007/978-90-481-9304-2_4 CrossRefGoogle Scholar
  40. 40.
    Stuijk S, Geilen M, Theelen BD, Basten T (2011) Scenario-aware dataflow: modeling, analysis and implementation of dynamic applications. In: Proceedings of the international conference on embedded computer systems: architectures, modeling, and simulation (ICSAMOS 2011). IEEE Computer Society, pp 404–411. doi: 10.1109/SAMOS.2011.6045491
  41. 41.
    Thiele L, Strehl K, Ziegenbein D, Ernst R, Teich J (1999) FunState – an internal design representation for codesign. In: White JK, Sentovich E (eds) ICCAD. IEEE, pp 558–565Google Scholar
  42. 42.
    Thiele L, Teich J, Naedele M, Strehl K, Ziegenbein D (1998) SCF – state machine controlled flow diagrams. Technical report, Computer Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Gloriastrasse 35, CH-8092. Technical Report TIK-33Google Scholar
  43. 43.
    Xu Y, Rosales R, Wang B, Streubühr M, Hasholzner R, Haubelt C, Teich J (2012) A very fast and quasi-accurate power-state-based system-level power modeling methodology. In: Herkersdorf A, Römer K, Brinkschulte U (eds) Proceedings of the architecture of computing systems (ARCS 2012), vol 7179. Springer, Berlin/Heidelberg, pp 37–49. doi: 10.1007/978-3-642-28293-5_4 CrossRefGoogle Scholar
  44. 44.
    Zebelein C (2014) A model-based approach for the specification and refinement of streaming applications. Ph.D. thesis, University of RostockGoogle Scholar
  45. 45.
    Zebelein C, Falk J, Haubelt C, Teich J (2008) Classification of general data flow actors into known models of computation. In: Proceedings 6th ACM/IEEE international conference on formal methods and models for codesign (MEMOCODE 2008), pp 119–128Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Joachim Falk
    • 1
  • Christian Haubelt
    • 2
  • Jürgen Teich
    • 1
  • Christian Zebelein
    • 3
  1. 1.Department of Computer ScienceFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Department of Computer Science and Electrical Engineering, Institute of Applied Microelectronics and Computer EngineeringUniversity of RostockRostockGermany
  3. 3.Valeo Siemens eAutomotive Germany GmbHErlangenGermany

Personalised recommendations