Encyclopedia of Lipidomics

Living Edition
| Editors: Markus R. Wenk

Liquid Chromatography-Mass Spectrometry of Sphingolipids

  • Federico Torta
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-7864-1_82-1

Synonyms

Definition

In-depth profiling of sphingolipids can be achieved using a combination of LC and MSn.

Introduction

Sphingolipids (SP) represent a heterogeneous lipid class that plays fundamental roles in maintaining the cell structure and in regulating signaling processes. A sphingoid (or long chain) base (LCB), the conserved structural component of all sphingolipids, with different carbon chain length, position and number of double bonds, and hydroxylations can be acylated with different fatty acids (between C14 and C26) to give ceramides (Cer). SP heterogeneity is then increased by the different modifications on the headgroup (phosphorylation, glycosylation) to give sphingomyelins (SM) and glycosphingolipids (Merrill 2011). SP are generally lower in abundance (<20%) when compared to their glycerolipid counterparts.

Several specific methods for sphingolipids extraction have been published in the last few years and have improved the detection of the low abundant...

This is a preview of subscription content, log in to check access.

References

  1. Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ. An efficient single phase method for the extraction of plasma lipids. Metabolites. 2015;5(2):389–403.  https://doi.org/10.3390/metabo5020389.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Burla B, Muralidharan S, Wenk MR, Torta F. Sphingolipid analysis in clinical research. Methods Mol Biol. 2018;1730:135–62.  https://doi.org/10.1007/978-1-4939-7592-1_11.CrossRefPubMedGoogle Scholar
  3. Busik JV, Reid GE, Lydic TA. Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry. Methods Mol Biol. 2009;579:33–70.  https://doi.org/10.1007/978-1-60761-322-0.
  4. Chaurasia B, Kaddai VA, Lancaster GI, Henstridge DC, Sriram S, Galam DLA, … Summers SA. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab. 2016; 24(6):820–34.  https://doi.org/10.1016/j.cmet.2016.10.002.
  5. Hájek R, Jirásko R, Lísa M, Cífková E, Holčapek M. Hydrophilic interaction liquid chromatography–mass spectrometry characterization of gangliosides in biological samples. Anal Chem. 2017.  https://doi.org/10.1021/acs.analchem.7b03523.
  6. Huang H, Tong TT, Yau LF, Chen CY, Mi JN, Wang JR, Jiang ZH. LC-MS based sphingolipidomic study on A2780 human ovarian cancer cell line and its Taxol-resistant strain. Sci Rep. 2016;6(September):1–13.  https://doi.org/10.1038/srep34684.CrossRefGoogle Scholar
  7. Ikeda K, Shimizu T, Taguchi R. Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J Lipid Res. 2008;49(12):2678–89.  https://doi.org/10.1194/jlr.D800038-JLR200.CrossRefPubMedGoogle Scholar
  8. Kauhanen D, Sysi-Aho M, Koistinen KM, Laaksonen R, Sinisalo J, Ekroos K. Development and validation of a high-throughput LC–MS/MS assay for routine measurement of molecular ceramides. Anal Bioanal Chem. 2016;408(13):3475–83.  https://doi.org/10.1007/s00216-016-9425-z.CrossRefPubMedGoogle Scholar
  9. t’Kindt R, Jorge L, Dumont E, Couturon P, David F, Sandra P, Sandra K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem. 2012;84(1):403–11.Google Scholar
  10. Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K. Flexibility of a eukaryotic lipidome – insights from yeast lipidomics. PLoS One. 2012;7(4):e35063.  https://doi.org/10.1371/journal.pone.0035063.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, … Baker ES. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 2016;141(5):1649–59.  https://doi.org/10.1039/C5AN02062J.
  12. Lee H, Lerno LA, Choe Y, Chu CS, Gillies LA, Grimm R, … German JB. Multiple precursor ion scanning of gangliosides and sulfatides with a reversed-phase microfluidic chip and quadrupole time-of-flight mass spectrometry. Anal Chem. 2012;84(14):5905–12.  https://doi.org/10.1021/ac300254d.
  13. Markham JE, Li J, Cahoon EB, Jaworski JG. Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem. 2006;281(32):22684–94.  https://doi.org/10.1074/jbc.M604050200.CrossRefPubMedGoogle Scholar
  14. Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev. 2011;111(10):6387–422.  https://doi.org/10.1021/cr2002917.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Narayanaswamy P, Shinde S, Sulc R, Kraut R, Staples G, Thiam CH, … Wenk MR. Lipidomic “deep profiling”: an enhanced work flow to reveal new molecular species of signaling lipids. Anal Chem. 2014;86:3043–7.Google Scholar
  16. Naz S, Gallart-Ayala H, Reinke SN, Mathon C, Blankley R, Chaleckis R, Wheelock CE. Development of a liquid chromatography-high resolution mass spectrometry metabolomics method with high specificity for metabolite identification using all ion fragmentation acquisition. Anal Chem. 2017;89(15):7933–42.  https://doi.org/10.1021/acs.analchem.7b00925.CrossRefPubMedGoogle Scholar
  17. Ovčačíková M, Lísa M, Cífková E, Holčapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2016; 1450: 76–85.  https://doi.org/10.1016/j.chroma.2016.04.082.CrossRefPubMedGoogle Scholar
  18. Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12(4):797–813.  https://doi.org/10.1038/nprot.2017.013.CrossRefPubMedGoogle Scholar
  19. Peng B, Weintraub ST, Coman C, Ponnaiyan S, Sharma R, Tews B, … Ahrends R. A comprehensive high-resolution targeted workflow for the deep profiling of sphingolipids. Anal Chem. 2017;89(22):12480–7.  https://doi.org/10.1021/acs.analchem.7b03576.
  20. Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, … Woods AS. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods. 2016; 272:19–32.  https://doi.org/10.1016/j.jneumeth.2016.02.004.
  21. Sarbu M, Robu AC, Ghiulai RM, Vukelić Ž, Clemmer DE, Zamfir AD. Electrospray ionization ion mobility mass spectrometry of human brain gangliosides. Anal Chem. 2016;88(10):5166–78.  https://doi.org/10.1021/acs.analchem.6b00155.CrossRefPubMedGoogle Scholar
  22. Scherer M, Schmitz G, Liebisch G. High-throughput analysis of in plasma samples by liquid chromatography – tandem mass spectrometry. Clin Chem. 2009;55(6): 1218–22.CrossRefGoogle Scholar
  23. Scherer M, Leuthäuser-Jaschinski K, Ecker J, Schmitz G, Liebisch G. A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res. 2010; 51(7): 2001–11.  https://doi.org/10.1194/jlr.D005322.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, … Merrill AH. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res. 2009;50(8):1692–707.  https://doi.org/10.1194/jlr.D800051-JLR200.
  25. Sims K, Haynes CA, Kelly S, Allegood JC, Wang E, Momin A, … Merrill AH. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem. 2010; 285(49):38568–79.  https://doi.org/10.1074/jbc.M110.170621.
  26. von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, … Sandhoff R. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res. 2017;58.  https://doi.org/10.1194/jlr.D076190.
  27. Wang JR, Zhang H, Yau LF, Mi JN, Lee S, Lee KC, … Jiang ZH. Improved sphingolipidomic approach based on ultra-high performance liquid chromatography and multiple mass spectrometries with application to cellular neurotoxicity. Anal Chem. 2014;86(12):5688–96.  https://doi.org/10.1021/ac5009964.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Singapore Lipidomics Incubator (SLING), Department of BiochemistryYLL School of Medicine, Life Sciences Institute, National University of SingaporeSingaporeSingapore